浏览全部资源
扫码关注微信
南京工业大学 江苏省柔性电子重点实验室 先进材料研究院 江苏省先进生物与化学制造协同创新中心 南京 211816
E-mail: wei-huang@njtech.edu.cn Wei Huang, E-mail: wei-huang@njtech.edu.cn
纸质出版日期:2018-11,
收稿日期:2018-3-27,
修回日期:2018-5-4,
扫 描 看 全 文
卢晓梅, 赵萌, 黄维. 氮杂氟硼二吡咯接枝聚合物光声造影剂的制备及应用[J]. 高分子学报, 2018,0(11):1451-1459.
Xiao-mei Lu, Meng Zhao, Wei Huang. Synthesis of Near-infrared Poly(IB-
卢晓梅, 赵萌, 黄维. 氮杂氟硼二吡咯接枝聚合物光声造影剂的制备及应用[J]. 高分子学报, 2018,0(11):1451-1459. DOI: 10.11777/j.issn1000-3304.2018.18068.
Xiao-mei Lu, Meng Zhao, Wei Huang. Synthesis of Near-infrared Poly(IB-
设计合成了氮杂氟硼二吡咯为侧链的聚异丁烯-
alt
-马来酸酐,该聚合物可作为光声造影剂,应用于小鼠肿瘤的光声成像. 首先通过在氮杂氟硼二吡咯侧链上引入给电子基团烷基链,制备出在780 ~ 800 nm有吸收的有机染料,利用聚异丁烯-马来酸酐与羟基的开环反应,将有机染料接枝到聚合物侧链,聚合物在水溶液中形成60 nm的纳米颗粒,纳米颗粒以氮杂氟硼二吡咯染料为核,聚合物为壳. 通过动态光散射,透射电子显微镜,紫外-可见光吸收光谱,光热实验等,对纳米颗粒的形貌和光学性质进行表征;研究表明,纳米颗粒不仅具有良好的稳定性,还具备良好的光热性能;体外的MTT细胞实验研究结果表明,这种纳米颗粒具有良好的生物相容性;在800 nm激发下,监测到纳米颗粒具有良好的体外和体内光声信号,表明纳米颗粒具备光声造影剂特性,能够实现活体肿瘤的光声成像.
Near-infrared poly(isobutylene-
alt
-MAnh)-aza-bodipy
which can be used as photoacoustic imaging contrast agent
in vivo
mice
was synthesized by ring opening reaction of poly(isobutylene-
alt
-MAnh) with hydroxyl group. Near-infrared organic nanoparticle was formed in water with their hydrodynamic diameter of 60 nm. These nanoparticles were formed with a core of aza-bodipy dye and shell of polymer. Dynamic light scattering (DLS)
transmission electron microscopy (TEM) and ultraviolet-visible absorption spectra (UV-Vis) were used to characterize the morphology
size and optical property of the nanoparticles in aqueous solution. The results showed that the nanoparticles had uniform appearance and strong absorption in near-infrared area. Moreover
DLS was used to observe the stability of nanoparticles in serum and the size of nanoparticles was kept pratically constant within 24 h. Photothermal experiment was conducted to study the nanoparticle performance at different power and concentration
which exhibited excellent photothermal performance. MTT assay demonstrated that the nanoparticles had a good biocompatibility and photothermal performance at different concentrations. In addition
the photoacoustic property of the nanoparticles was studied by photoacoustic imaging and the results showed that they had strong photoacoustic signals at a low concentration. Photoacoustic imaging experiments on mice were also studied. It was found that tumor location on mice had a significant photoacoustic signal enhancement after tail vein injection of the nanoparticles. With 24 h of circulation in blood after injection of the nanoparticles
the photoacoustic signal disappeared
which indicated that the nanoparticles had good metabolic and biocompatibility.
近红外氮杂氟硼二吡咯聚异丁烯-alt-马来酸酐光声成像
Near-infraredAza-bodipyPoly(isobutylene-alt-MAnh)Photoacoustic imaging
Rivas C, Stasiuk G J, Gallo J, Minuzzi F, Rutter G A, Long N J . Inorg Chem , 2013 . 52 14284 - 14293.
Li X, Anton N, Zuber G, Vandamme T . Adv Drug Deliv Rev , 2014 . 12640 - 12657.
Li K, Ding D, Huo D, Pu K Y, Thao N N P, Hu Y, Li Z, Liu B . Adv Fuc Mater , 2012 . 22 ( 15 ): 3107 - 3115.
Tang L, Yang X J, Yin Q, Yao C, Lezmi S, Helferich W G, Fan T M, Cheng J J . Angew Chem , 2012 . 124 ( 51 ): 12893 - 12898.
Huang Hailong(黄海龙), Zhai Shubo(翟淑波), Li Caijin(李彩今), Zhang Yingmu(张赢木), Wang Jingyuan(王静媛), Chen Liang(陈亮) . 高分子学报 , 2014 . ( 2 ): 194 - 201.
Sun Z B, Zhao Y T, Li Z B, Cui H D, Zhou Y Y, Li W H, Tao W, Zhang H, Wang H Y, Chu P K, Yu X F. Small, 2017, 13 (11): 1602896
Mishra A, Jiang Y Y, Roberts S, Ntziachristos V, Westmeyer G G . Anal Chem , 2016 . 88 ( 22 ): 10785 - 10789.
Li J W, Arnal B, Wei C W, Shang J, Nguyen T M, Donnell M O, Gao X H . ACS Nano , 2015 . 9 ( 2 ): 1964 - 1976.
Cook J R, Frey W, Emelianov S . ACS Nano , 2013 . 7 ( 2 ): 1272 - 1280.
Zhang C, Ling T, Chen S L, Guo L J . ACS Photonics , 2014 . 1 ( 11 ): 1093 - 1098.
Jiang Y Y, Pu K Y . Small , 2017 . 13 1 - 19.
Yu X J, Li A, Zhao C Z, Yang K, Chen X Y, Li W W . ACS Nano , 2017 . 11 ( 4 ): 3990 - 4001.
Lemaster J E, Jokerst J V. Wires Nanomed Nanobi, 2017, 9(1): e1404
Li W Y, Brown P K, Wang L V, Xia Y N . Contrast Media Mol , 2011 . 6 ( 5 ): 370 - 377.
Aya K, Srikant V, Benjamin C, Omer O, Butrus K Y . J Ultra Med , 2013 . 32 ( 7 ): 1245 - 1250.
Zerda A D L, Bodapati S, Teed R, May S Y, Tabakman S M, Liu Z, Khuri B T, Chen X Y, Dai H J, Gambhir S S . ACS Nano , 2012 . 6 ( 6 ): 4694 - 4701.
Lu Xiaomei(卢晓梅), Chen Pengfei(陈鹏飞), Hu Wenbo(胡文博), Tang Yufu(唐玉富), Huang Wei(黄维), Fan Quli(范曲立) . 化学进展 , 2017 . 29 ( 1 ): 119 - 126.
. Prog Chem , 2017 . 29 ( 1 ): 119 - 126.
Lu Xiaomei(卢晓梅), Jiao Jianmei(焦剑梅), Huang Wei(黄维) . 高分子学报 , 2017 . ( 12 ): 1955 - 1965.
Toumia Y, Domenici F, Orlanducci S, Mura F, Grishenkov D, Trochet P, Lacerenza S, Bordi F, Paradossi G . ACS Appl Mater Interfaces , 2016 . 8 ( 25 ): 16465 - 16475.
Namgung R, Lee Y M, Kim J, Jang Y, Lee B H, Kim I S, Sokkar P, Rhee Y M, Hoffman A S, Kim W J . Nat Commun , 2014 . 5 ( 6183 ): 3702 - 3713.
Yang H Y, Jang M S, Li Y, Lee J H, Lee D S . ACS Appl Mater Interfaces , 2017 . 9 ( 22 ): 19184 - 19192.
Lu H D, Wilson B K, Heinmiller A, Faenza B, Hejazi S, Robert K . ACS Appl Mater Interfaces , 2016 . 8 ( 23 ): 14379 - 14388.
Xu R X . Contrast Media Mol , 2011 . 6 ( 5 ): 401 - 411.
Ma Hengheng(马恒恒), Jiang Rongcui(江荣翠), Fan Quli(范曲立), Wang Wenjun(王文军), Huang Wei(黄维) . 高分子学报 , 2017 . ( 11 ): 1781 - 1788.
0
浏览量
15
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构