浏览全部资源
扫码关注微信
1.中国科学院上海应用物理研究所 上海 201800
2.中国科学院大学 北京 100049
3.华东师范大学化学与分子工程学院 上海 200241
E-mail: wlh@sinap.ac.cn Li-hua Wang, E-mail: wlh@sinap.ac.cn
E-mail: peihao@chem.ecnu.edu.cn Hao Pei, E-mail: peihao@chem.ecnu.edu.cn
纸质出版日期:2018-5,
收稿日期:2018-2-28,
修回日期:2018-3-27,
扫 描 看 全 文
王飞, 钟睿博, 唐倩, 王建榜, 柳华杰, 瞿祥猛, 王丽华, 裴昊. ATP触发快速响应的线性DNA凝胶[J]. 高分子学报, 2018,0(5):553-558.
Fei Wang, Rui-bo Zhong, Qian Tang, Jian-bang Wang, Hua-jie Liu, Xiang-meng Qu, Li-hua Wang, Hao Pei. An ATP-Responsive Linear DNA Hydrogel[J]. Acta Polymerica Sinica, 2018,0(5):553-558.
王飞, 钟睿博, 唐倩, 王建榜, 柳华杰, 瞿祥猛, 王丽华, 裴昊. ATP触发快速响应的线性DNA凝胶[J]. 高分子学报, 2018,0(5):553-558. DOI: 10.11777/j.issn1000-3304.2018.18070.
Fei Wang, Rui-bo Zhong, Qian Tang, Jian-bang Wang, Hua-jie Liu, Xiang-meng Qu, Li-hua Wang, Hao Pei. An ATP-Responsive Linear DNA Hydrogel[J]. Acta Polymerica Sinica, 2018,0(5):553-558. DOI: 10.11777/j.issn1000-3304.2018.18070.
设计了2条分别带有腺苷三磷酸(ATP)适配体序列和黏性末端的单链DNA,二者首先通过互补杂交形成一个双链DNA单体,再由此单体自组装形成长线性DNA多聚体并进一步通过物理交联形成DNA水凝胶. 通过流变学测试表征了水凝胶的形成,并通过应力扫描观察了从凝胶状态到溶液状态的转变. 使用亚甲基蓝(MB)分子作为标记,通过紫外吸收光谱表征了该DNA水凝胶对ATP的响应动态. 在加入ATP的15 min以内,DNA水凝胶在664 nm处的吸光值迅速上升并达到平台,表明该DNA水凝胶可以快速响应ATP. 该DNA水凝胶在664 nm处的吸光值与ATP的浓度具有很好的线性相关性. DNA水凝胶中分别加入ATP、胸苷三磷酸(TTP)、胞苷三磷酸(CTP)、鸟苷三磷酸(GTP) 4种类似物,通过紫外吸收光谱的测试表明了只有加入ATP的DNA水凝胶发生了解聚,MB被释放出来,说明该DNA水凝胶具有较好的稳定性以及对ATP响应的特异性.
A single-stranded DNA with adenosine triphosphate (ATP) aptamer sequence and a single-stranded DNA with cohesive end were designed for the formation of linear DNA hydrogel. First
a double-stranded DNA monomer was formed by the hybridization of sticky ends. Then this monomer self-assembled to form a long linear DNA polymer and further form a DNA hydrogel by physically cross-linking. The formation of the hydrogel was characterized by rheological tests and the transition from the gel state to the solution state was observed by stress scanning. Using methylene blue (MB) as a marker
the responsive dynamics of the DNA hydrogel to ATP was characterized by UV absorption spectroscopy. Within 15 min after the addition of ATP
the absorbance of the DNA hydrogel at 664 nm rose rapidly and reached a plateau
indicating that the DNA hydrogel can respond quickly to ATP. Moreover
the absorbance of the DNA hydrogel at 664 nm has a good linear correlation with ATP concentration. For comparison
ATP
thymidine triphosphate (TTP)
cytidine triphosphate (CTP) and guanosine triphosphate (GTP) were added to the DNA hydrogel
respectively. The UV absorption spectrum test showed that only the ATP-containing DNA hydrogel was depolymerized and MB was released
indicating that the DNA hydrogel has good stability and its response to ATP was specific.
DNA水凝胶适配体
DNAHydrogelAptamer
Xiao M S, Lai W, Wang X W, Qu X M, Li L, Pei H. Microphysiol Syst, 2018, 2(1): DOI: 10.21037/mps.2017.12.01
Qi L, Xiao M S, Wang X W, Wang C, Wang L H, Song S P, Qu X M, Li L, Shi J Y, Pei H . Anal Chem , 2017 . 89 ( 18 ): 9850 - 9856 . DOI:10.1021/acs.analchem.7b01861http://doi.org/10.1021/acs.analchem.7b01861 .
Chhabra R, Sharma J, Liu Y, Rinker S, Yan H . Adv Drug Delivery Rev , 2010 . 62 ( 6 ): 617 - 625 . DOI:10.1016/j.addr.2010.03.005http://doi.org/10.1016/j.addr.2010.03.005 .
Seeman N C . Nature , 2003 . 421 ( 6921 ): 427 - 431 . DOI:10.1038/nature01406http://doi.org/10.1038/nature01406 .
Seeman N C . Angew Chem Int Ed , 1998 . 37 ( 23 ): 3220 - 3238 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773 .
Winfree E, Liu F, Wenzler L A, Seeman N C . Nature , 1998 . 394 ( 6693 ): 539 - 544 . DOI:10.1038/28998http://doi.org/10.1038/28998 .
Yan H, Park S H, Finkelstein G, Reif J H, LaBean T H . Science , 2003 . 301 ( 5641 ): 1882 - 1884 . DOI:10.1126/science.1089389http://doi.org/10.1126/science.1089389 .
He Y, Tian Y, Ribbe A E, Mao C D . J Am Chem Soc , 2006 . 128 ( 50 ): 15978 - 15979 . DOI:10.1021/ja0665141http://doi.org/10.1021/ja0665141 .
Rothemund P W K . Nature , 2006 . 440 ( 7082 ): 297 - 302 . DOI:10.1038/nature04586http://doi.org/10.1038/nature04586 .
He Y, Ye T, Su M, Zhang C, Ribbe A E, Jiang W, Mao C D . Nature , 2008 . 452 ( 7184 ): 198 - 201 . DOI:10.1038/nature06597http://doi.org/10.1038/nature06597 .
Chen J H, Seeman N C . Nature , 1991 . 350 ( 6319 ): 631 - 633 . DOI:10.1038/350631a0http://doi.org/10.1038/350631a0 .
Goodman R P, Schaap I A, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A J . Science , 2005 . 310 ( 5754 ): 1661 - 1665 . DOI:10.1126/science.1120367http://doi.org/10.1126/science.1120367 .
Ke Y G, Liu Y, Zhang J P, Yan H . J Am Chem Soc , 2006 . 128 ( 13 ): 4414 - 4421 . DOI:10.1021/ja058145zhttp://doi.org/10.1021/ja058145z .
Park S H, Finkelstein G, LaBean T H . J Am Chem Soc , 2008 . 130 ( 1 ): 40 - 41 . DOI:10.1021/ja078122fhttp://doi.org/10.1021/ja078122f .
Yao G B, Li J, Chao J, Pei H, Liu H J, Zhao Y, Shi J Y, Huang Q, Wang L H, Huang W, Fan C H . Angew Chem Int Ed , 2015 . 54 ( 10 ): 2966 - 2969 . DOI:10.1002/anie.201410895http://doi.org/10.1002/anie.201410895 .
Pei H, Liang L, Yao G B, Li J, Huang Q, Fan C H . Angew Chem Int Ed , 2012 . 51 ( 36 ): 9020 - 9024 . DOI:10.1002/anie.201202356http://doi.org/10.1002/anie.201202356 .
Chao J, Zhang Y N, Zhu D, Liu B, Cui C J, Su S, Fan C H, Wang L H . Sci China Chem , 2016 . 59 ( 6 ): 730 - 734 . DOI:10.1007/s11426-016-5596-xhttp://doi.org/10.1007/s11426-016-5596-x .
Liu B, Ouyang X Y, Chao J, Liu H J, Zhao Y, Fan C H . Chin J Chem , 2014 . 32 ( 2 ): 137 - 141 . DOI:10.1002/cjoc.v32.2http://doi.org/10.1002/cjoc.v32.2 .
Ge Z L, Pei H, Wang L H, Song S P, Fan C H . Sci China Chem , 2011 . 54 ( 8 ): 1273 - 1276 . DOI:10.1007/s11426-011-4327-6http://doi.org/10.1007/s11426-011-4327-6 .
Chen P, Pan D, Fan C H, Chen J H, Huang K, Wang D F, Zhang H L, Li Y, Feng G Y, Liang P J, He L, Shi Y Y . Nat Nanotechnol , 2011 . 6 ( 10 ): 639 - 644 . DOI:10.1038/nnano.2011.141http://doi.org/10.1038/nnano.2011.141 .
Qu X M, Zhu D, Yao G B, Su S, Chao J, Liu H J, Zuo X L, Wang L H, Shi J Y, Wang L H, Huang W, Pei H, Fan C H . Angew Chem Int Ed , 2017 . 56 ( 7 ): 1855 - 1858 . DOI:10.1002/anie.201611777http://doi.org/10.1002/anie.201611777 .
Qu X M, Wang S P, Ge Z L, Wang J B, Yao G B, Li J, Zuo X L, Shi J Y, Song S P, Wang L H, Li L, Pei H, Fan C H . J Am Chem Soc , 2017 . 139 ( 30 ): 10176 - 10179 . DOI:10.1021/jacs.7b04040http://doi.org/10.1021/jacs.7b04040 .
Abi A, Lin M H, Pei H, Fan C H, Ferapontova E E, Zuo X L . ACS Appl Mater Interfaces , 2014 . 6 ( 11 ): 8928 - 8931 . DOI:10.1021/am501823qhttp://doi.org/10.1021/am501823q .
Yao G B, Pei H, Li J, Zhao Y, Zhu D, Zhang Y N, Lin Y F, Huang Q, Fan C H. NPG Asia Mater, 2015, 7: DOI:10.1038/am.2014.131
Yang X F, Li J, Pei H, Li D, Zhao Y, Gao J M, Lu J X, Shi J Y, Fan C H, Huang Q . Small , 2013 . 9 ( 17 ): 2844 - 2849 . DOI:10.1002/smll.v9.17http://doi.org/10.1002/smll.v9.17 .
Chen Q S, Liu H J, Lee W, Sun Y Z, Zhu D, Pei H, Fan C H, Fan X D . Lab Chip , 2013 . 13 ( 17 ): 3351 - 3354 . DOI:10.1039/c3lc50629khttp://doi.org/10.1039/c3lc50629k .
Nilsen T W, Grayzel J, Prensky W . J Theor Biol , 1997 . 187 ( 2 ): 273 - 284 . DOI:10.1006/jtbi.1997.0446http://doi.org/10.1006/jtbi.1997.0446 .
Li Y G, Tseng Y D, Kwon S Y, D’Espaux L, Bunch J S, Mceuen P L, Luo D . Nat Mater , 2004 . 3 ( 1 ): 38 - 42 . DOI:10.1038/nmat1045http://doi.org/10.1038/nmat1045 .
Feldkamp U, Sacca B, Niemeyer C M . Angew Chem Int Ed , 2009 . 48 ( 33 ): 5996 - 6000 . DOI:10.1002/anie.v48:33http://doi.org/10.1002/anie.v48:33 .
Zhou T, Chen P, Niu L, Jin J, Liang D H, Li Z B, Yang Z Q, Liu D S . Angew Chem Int Ed , 2012 . 51 ( 45 ): 11271 - 11274 . DOI:10.1002/anie.201205862http://doi.org/10.1002/anie.201205862 .
Um S H, Lee J B, Park N, Kwon S Y, Umbach C C, Luo D . Nat Mater , 2006 . 5 ( 10 ): 797 - 801 . DOI:10.1038/nmat1741http://doi.org/10.1038/nmat1741 .
Lee C K, Shin S R, Lee S H, Jeon J H, So I, Kang T M, Kim S I, Mun J Y, Han S S, Spinks G M, Wallace G G, Kim S J . Angew Chem Int Ed , 2008 . 47 ( 13 ): 2470 - 2474 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773 .
Liedl T, Dietz H, Yurke B, Simmel F C . Small , 2007 . 3 ( 10 ): 1688 - 1693 . DOI:10.1002/(ISSN)1613-6829http://doi.org/10.1002/(ISSN)1613-6829 .
Zhong R B, Tang Q, Wang S P, Zhang H B, Zhang F, Xiao M S, Man T T, Qu X M, Li L, Zhang W J, Pei H. Adv Mater, 2018, DOI: 10.1002/adma.201706887
Li C, Zhou X, Shao Y, Chen P, Xing Y Z, Yang Z Q, Li Z B, Liu D S . Mater Chemi Fronti , 2017 . 1 ( 4 ): 654 - 659 . DOI:10.1039/C6QM00176Ahttp://doi.org/10.1039/C6QM00176A .
LaBean T . Nat Mater , 2006 . 5 ( 10 ): 767 - 768 . DOI:10.1038/nmat1745http://doi.org/10.1038/nmat1745 .
Cheng E J, Xing Y Z, Chen P, Yang Y, Sun Y W, Zhou D J, Xu L J, Fan Q H, Liu D S . Angew Chem Int Ed , 2009 . 48 ( 41 ): 7660 - 7663 . DOI:10.1002/anie.v48:41http://doi.org/10.1002/anie.v48:41 .
Xing Y Z, Cheng E J, Yang Y, Chen P, Zhang T, Sun Y W, Yang Z Q, Liu D S . Adv Mater , 2011 . 23 ( 9 ): 1117 - 1121 . DOI:10.1002/adma.201003343http://doi.org/10.1002/adma.201003343 .
Park N, Um S H, Funabashi H, Xu J F, Luo D . Nat Mater , 2009 . 8 ( 5 ): 432 - 437 . DOI:10.1038/nmat2419http://doi.org/10.1038/nmat2419 .
Jin J, Xing Y Z, Xi Y L, Liu X L, Zhou T, Ma X X, Yang Z Q, Wang S T, Liu D S . Adv Mater , 2013 . 25 ( 34 ): 4714 - 4717 . DOI:10.1002/adma.v25.34http://doi.org/10.1002/adma.v25.34 .
Zhou X, Li C, Shao Y, Chen C, Yang Z Q, Liu D S . Chem Commun , 2016 . 52 ( 70 ): 10668 - 10671 . DOI:10.1039/C6CC04724Fhttp://doi.org/10.1039/C6CC04724F .
Jia H Y, Shi J Z, Shao Y, Liu D S . Chinese J Polym Sci , 2017 . 35 ( 10 ): 1307 - 1314 . DOI:10.1007/s10118-017-1978-6http://doi.org/10.1007/s10118-017-1978-6 .
Acta Polymerica Sinica(高分子学报) , 2017 . ( 1 ): 135 - 142.
Fogleman E A, Yount W C, Xu J, Craig S L . Angew Chem Int Ed , 2002 . 41 ( 21 ): 4026 - 4028 . DOI:10.1002/1521-3773(20021104)41:21<4026::AID-ANIE4026>3.0.CO;2-Ehttp://doi.org/10.1002/1521-3773(20021104)41:21<4026::AID-ANIE4026>3.0.CO;2-E .
Xu J, Fogleman E A, Craig S L . Macromolecules , 2004 . 37 ( 5 ): 1863 - 1870 . DOI:10.1021/ma035546vhttp://doi.org/10.1021/ma035546v .
Tuerk C, Gold L . Science , 1990 . 249 ( 4968 ): 505 - 510 . DOI:10.1126/science.2200121http://doi.org/10.1126/science.2200121 .
Ellington A D, Szostak J W . Nature , 1992 . 355 ( 6363 ): 850 - 852 . DOI:10.1038/355850a0http://doi.org/10.1038/355850a0 .
Qu X M, Zhang H B, Chen H, Aldalbahi A, Li L, Tian Y, Weitz D A, Pei H . Anal Chem , 2017 . 89 ( 6 ): 3468 - 3473 . DOI:10.1021/acs.analchem.6b04475http://doi.org/10.1021/acs.analchem.6b04475 .
Ferapontova E E, Olsen E M, Gothelf K V . J Am Chem Soc , 2008 . 130 ( 13 ): 4256 - 4258 . DOI:10.1021/ja711326bhttp://doi.org/10.1021/ja711326b .
Swensen J S, Xiao Y, Ferguson B S, Lubin A A, Lai R Y, Heeger A J, Plaxco K W, Soh H T . J Am Chem Soc , 2009 . 131 ( 12 ): 4262 - 4266 . DOI:10.1021/ja806531zhttp://doi.org/10.1021/ja806531z .
Liu H, Xiang Y, Lu Y, Crooks R M . Angew Chem Int Ed , 2012 . 51 ( 28 ): 6925 - 6928 . DOI:10.1002/anie.201202929http://doi.org/10.1002/anie.201202929 .
Lai R Y, Plaxco K W, Heeger A J . Anal Chem , 2007 . 79 ( 1 ): 229 - 233 . DOI:10.1021/ac061592shttp://doi.org/10.1021/ac061592s .
Hansen J A, Wang J, Kawde A N, Xiang Y, Gothelf K V, Collins G . J Am Chem Soc , 2006 . 128 ( 7 ): 2228 - 2229 . DOI:10.1021/ja060005hhttp://doi.org/10.1021/ja060005h .
Li H, Arroyo-Curras N, Kang D, Ricci F, Plaxco K W . J Am Chem Soc , 2016 . 138 ( 49 ): 15809 - 15812 . DOI:10.1021/jacs.6b08671http://doi.org/10.1021/jacs.6b08671 .
Yang F, Zuo X L, Li Z H, Deng W P, Shi J Y, Zhang G J, Huang Q, Song S P, Fan C H . Adv Mater , 2014 . 26 ( 27 ): 4671 - 4676 . DOI:10.1002/adma.v26.27http://doi.org/10.1002/adma.v26.27 .
Zhu Z, Wu C C, Liu H P, Zou Y, Zhang X L, Kang H Z, Yang C J, Tan W H . Angew Chem Int Ed , 2010 . 49 ( 6 ): 1052 - 1056 . DOI:10.1002/anie.v49:6http://doi.org/10.1002/anie.v49:6 .
Yang H H, Liu H P, Kang H Z, Tan W H . J Am Chem Soc , 2008 . 130 ( 20 ): 6320 - 6321 . DOI:10.1021/ja801339whttp://doi.org/10.1021/ja801339w .
Battig M R, Soontornworajit B, Wang Y . J Am Chem Soc , 2012 . 134 ( 30 ): 12410 - 12413 . DOI:10.1021/ja305238ahttp://doi.org/10.1021/ja305238a .
Li C, Rowland M J, Shao Y, Cao T Y, Chen C, Jia H Y, Zhou X, Yang Z Q, Scherman O A, Liu D S . Adv Mater , 2015 . 27 ( 21 ): 3298 - 3304 . DOI:10.1002/adma.v27.21http://doi.org/10.1002/adma.v27.21 .
Song P, Ye D K, Zuo X L, Li J, Wang J B, Liu H J, Hwang M T, Chao J, Su S, Wang L H, Shi J Y, Wang L H, Huang W, La R, Fan C H . Nano Lett , 2017 . 17 ( 9 ): 5193 - 5198 . DOI:10.1021/acs.nanolett.7b01006http://doi.org/10.1021/acs.nanolett.7b01006 .
Huizenga D E, Szostak J W . Biochemistry , 1995 . 34 ( 2 ): 656 - 665 . DOI:10.1021/bi00002a033http://doi.org/10.1021/bi00002a033 .
Chen W H, Liao W C, Sohn Y S, Fadeev M, Cecconello A, Nechushtai R, Willner I. Adv Funct Mater, 2018, 28(8): DOI: 10.1002/adfm.201705137
Shao Y, Jia H Y, Cao T Y, Liu D S . Acc Chem Res , 2017 . 50 ( 4 ): 659 - 668 . DOI:10.1021/acs.accounts.6b00524http://doi.org/10.1021/acs.accounts.6b00524 .
0
浏览量
29
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构