浏览全部资源
扫码关注微信
南开大学物理科学学院 天津 300071
E-mail: baohui@nankai.edu.cn
纸质出版日期:2018-10,
收稿日期:2018-3-2,
修回日期:2018-4-3,
扫 描 看 全 文
李青霄, 王铮, 尹玉华, 蒋润, 李宝会. 聚合物接枝纳米粒子两亲性分子在溶液中自组装行为的模拟研究[J]. 高分子学报, 2018,0(10):1351-1358.
Qing-xiao Li, Zheng Wang, Yu-hua Yin, Run Jiang, Bao-hui Li. Self-assembly of Polymer-grafted Nanoparticle Amphiphiles in Selective Solvents[J]. Acta Polymerica Sinica, 2018,0(10):1351-1358.
李青霄, 王铮, 尹玉华, 蒋润, 李宝会. 聚合物接枝纳米粒子两亲性分子在溶液中自组装行为的模拟研究[J]. 高分子学报, 2018,0(10):1351-1358. DOI: 10.11777/j.issn1000-3304.2018.18072.
Qing-xiao Li, Zheng Wang, Yu-hua Yin, Run Jiang, Bao-hui Li. Self-assembly of Polymer-grafted Nanoparticle Amphiphiles in Selective Solvents[J]. Acta Polymerica Sinica, 2018,0(10):1351-1358. DOI: 10.11777/j.issn1000-3304.2018.18072.
利用布朗动力学模拟方法,研究了聚合物接枝纳米粒子组成的两亲性分子在溶液中的自组装行为. 这种两亲性分子可通过自组装形成多种结构. 考察了两亲性分子浓度、疏溶剂纳米粒子直径、聚合物链和纳米粒子之间的相互作用、聚合物链的链长以及溶剂性质对组装结构的影响. 构建了随不同参数变化的形态相图. 我们观察到2种囊泡形成路径,并且通过控制两亲性分子浓度,能实现2种路径之间的转变,并将本研究的模拟结果与已报道的相关实验观测和模拟结果做了比较.
We performed Brownian dynamics simulations with implicit solvent to study the self-assembly of polymer-grafted nanoparticle amphiphiles in selective solvents. Each model amphiphile consists of one hydrophobic nanoparticle (H) bead and one hydrophilic polymer chain composed of P-beads. The diameter of each H-bead is varied from one to several times that of each P-bead. The influences of experimental conditions on the self-assembled morphologies are investigated. The experimental conditions studied include the amphiphile concentration
the size of the hydrophobic head
the interaction parameters between the hydrophilic bead and hydrophobic bead
the polymer chain length and the solvent. Various self-assembled morphologies are obtained
including conventional spherical micelles
cylindrical micelles
cylindrical networks
large compound micelles
thin sheets
spherical vesicles
and novel ones of tubular vesicles
cylindrical multicompartment vesicles
and spherical multicompartment vesicles. The morphological phase diagrams are constructed as a function of different parameters. Mechanisms of morphological formation are discussed. Two pathways
mechanisms I and II
of vesicle formation are identified. In mechanism I
the model amphiphiles first self-assemble into spherical micelles
which transform into cylindrical micelles
further into bilayer-sheets
and finally the sheets bend around and close up to form vesicles. In mechanism II
in the initial stage of simulation
the model amphiphiles first self-assemble into many small spherical aggregates
inside which the hydrophilic P-beads are mixing with hydrophobic H-beads. Subsequently
neighboring aggregates coalesce together
and microphase separation between H and P beads occurs in the interior of the aggregates
resulting in a concentration of P-beads at the center of the aggregates
i.e.
the formation of semivesicles. As simulation proceeds further
the semivesicles grow larger
and more and more P-beads enter into the inner of the semivesicles
and finally semivesicles expand outward
forming vesicles. Furthermore
transition from mechanism II to mechanism I can occur by increasing amphiphile concentration. At low amphiphile concentration
the attractions among the hydrophobic H-beads are dominant in the system. In this case
mechanism II occurs during vesicle formation. At high amphiphile concentration
repulsion among the hydrophilic P-beads dominates the system where bilayer-sheets occur as an intermediate state of the vesicle formation and thus mechanism I occurs. The simulation results are compared with available experimental and simulation results obtained from related systems.
聚合物接枝纳米粒子两亲性分子自组装溶液囊泡形成路径
Polymer-grafted nanoparticle amphiphilesSelf-assemblySelective solventsPathway of vesicle formation
Yu X F, Zhang W B, Yue K, Li X P, Liu H, Xin Y, Wang C L, Wesdemiotis C, Cheng S . J Am Chem Soc , 2012 . 134 ( 18 ): 7780 - 7787.
Kawauchi T, Kumaki J, Yashima E . J Am Chem Soc , 2005 . 127 ( 28 ): 9950 - 9951.
Yu X F, Zhong S, Li X P, Tu Y F, Yang S G, van Horn R M, Ni C Y, Pochan D J, Quirk R P, Wesdemiotis C, Zhang W B, Cheng S . J Am Chem Soc , 2010 . 132 ( 47 ): 16741 - 16744.
Zhang W, Fang B, Walther A, Müller A H E . Macromolecules , 2009 . 42 ( 7 ): 2563 - 2569.
Wang Z, Li Y, Dong X, Yu X, Guo K, Su H, Yue K, Wesdemiotis C, Cheng S Z D, Zhang W . Chem Sci , 2013 . 4 ( 3 ): 1345 - 1352.
Li W, Thanneeru S, Kanyo I, Liu B, He J . ACS Macro Lett , 2015 . 4 ( 7 ): 736 - 740.
Zhang Y, Zhao H Y . Langmuir , 2016 . 32 ( 15 ): 3567 - 3579.
Wen J, Zhang J, Zhang Y, Yang Y, Zhao H C . Polym Chem , 2014 . 5 ( 13 ): 4032 - 4038.
Yu X, Li Y, Dong X H, Yue K, Lin Z W, Feng X Y, Huang M J, Zhang W B, Cheng S Z D . J Polym Sci, Part B: Polym Phys , 2014 . 52 ( 20 ): 1309 - 1325.
Zhang W B, Yu X F, Wang C L, Sun H J, Hsieh I F, Li Y W, Dong X H, Yue K, van Horn R, Cheng S Z D . Macromolecules , 2014 . 47 ( 4 ): 1221 - 1239.
Mai Y, Eisenberg A . Chem Soc Rev , 2012 . 41 ( 18 ): 5969 - 5985.
Shen H W, Eisenberg A . J Phys Chem B , 1999 . 103 ( 44 ): 9473 - 9487.
Du B, Mei A, Yin K, Zhang Q, Xu J, Fan Z . Macromolecules , 2009 . 42 ( 21 ): 8477 - 8484.
Li Q, Wang Z, Yin Y, Jiang R, Li B . Macromolecules , 2018 . 51 ( 8 ): 3050 - 3058.
Li W K, Kuo C H, Kanyo I, Thanneeru S, He J . Macromolecules , 2014 . 47 ( 17 ): 5932 - 5941.
Li B, Zhao L, Qian H J, Lu Z Y . Soft Matter , 2014 . 10 ( 13 ): 2245 - 2252.
Anderson J A, Travesset A . Macromolecules , 2006 . 39 ( 15 ): 5143 - 5151.
Grest G S, Kremer K . Phys Rev A , 1986 . 33 ( 5 ): 3628 - 3631.
Anderson J A, Lorenz C D, Travesset A . J Comput Phys , 2008 . 227 ( 10 ): 5342 - 5359.
Glaser J, Nguyen T D, Anderson J A, Liu P, Spiga F, Millan J A, Morse D C, Glotzer S C . Comput Phys Commun , 2015 . 192 97 - 107.
Zhu Y, Liu H, Li Z, Qian H, Milano G, Lu Z . J Comput Chem , 2013 . 34 ( 25 ): 2197 - 2211.
Zhu Y, Pan D, Li Z, Liu H, Qian H, Zhao Y, Lu Z, Sun Z . Mol Phys , 2018 . 116 ( 7-8 ): 1065 - 1077.
Ma S, Hu Y, Wang R . Macromolecules , 2015 . 48 ( 9 ): 3112 - 3120.
Zhang L F, Eisenberg A . Science , 1995 . 268 ( 5218 ): 1728 - 1731.
Sun P, Yin Y, Li B, Chen T, Jin Q, Ding D . J Chem Phys , 2005 . 122 ( 20 ): 204905 .
Song Y, Jiang R, Wang Z, Wang L, Yin Y, Li B, S hi, A C . Macromol Theory Simul , 2016 . 25 ( 6 ): 559 - 570.
Uneyama T . J Chem Phys , 2007 . 126 ( 11 ): 11490 .
Xiao M, Xia G, Wang R, Xie D . Soft Matter , 2012 . 8 ( 30 ): 7865 - 7874.
Huang J H, Wang Y, Qian C . J Chem Phys , 2009 . 131 ( 23 ): 234902 .
Han Y, Yu H, Du H, Jiang W . J Am Chem Soc , 2010 . 132 ( 3 ): 1144 - 1150.
He X, Liang H, Huang L, Pan C . J Phys Chem B , 2004 . 108 ( 5 ): 1731 - 1735.
He X, Schmid F . Macromolecules , 2006 . 39 ( 7 ): 2654 - 2662.
He X, Schmid F . Phys Rev Lett , 2008 . 100 ( 13 ): 137802 .
0
浏览量
16
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构