浏览全部资源
扫码关注微信
1.上海交通大学材料科学与工程学院 金属基复合材料国家重点实验室 上海 200240
2.上海交通大学医学院附属第九人民医院 上海市组织工程重点实验室 上海 200011
E-mail: hjdou@sjtu.edu.cn Dou Hongjing, hjdou@sjtu.edu.cn
纸质出版日期:2018-8,
收稿日期:2018-3-12,
修回日期:2018-4-16,
扫 描 看 全 文
郭和泽, 宋晟, 戴婷婷, 李圣利, 窦红静. 由自组装构筑蛋白酶响应性近红外/磁共振双显影微球[J]. 高分子学报, 2018,0(8):1127-1140.
He-ze Guo, Sheng Song, Ting-ting Dai, Sheng-li Li, Hong-jing Dou. Trypsin-responsive Near-infrared Fluorescent/Magnetic Resonance Dual-imaging Composite Nanospheres Based on Self-assembly[J]. Acta Polymerica Sinica, 2018,0(8):1127-1140.
郭和泽, 宋晟, 戴婷婷, 李圣利, 窦红静. 由自组装构筑蛋白酶响应性近红外/磁共振双显影微球[J]. 高分子学报, 2018,0(8):1127-1140. DOI: 10.11777/j.issn1000-3304.2018.18079.
He-ze Guo, Sheng Song, Ting-ting Dai, Sheng-li Li, Hong-jing Dou. Trypsin-responsive Near-infrared Fluorescent/Magnetic Resonance Dual-imaging Composite Nanospheres Based on Self-assembly[J]. Acta Polymerica Sinica, 2018,0(8):1127-1140. DOI: 10.11777/j.issn1000-3304.2018.18079.
由分子侧链上修饰近红外荧光分子的聚赖氨酸及表面聚丙烯酸修饰的磁共振显影磁性纳米颗粒为组装单元,采用自组装法构筑了在近红外、磁共振双重显影中均具有蛋白酶响应性的纳米尺度自组装微球. 微球形成的组装驱动力为聚赖氨酸侧链氨基与磁性纳米颗粒表面羧基在水相中的静电相互作用,两类组装前驱体在静电力作用下组装为纳米尺度团聚体,再通过戊二醛对氨基的适度交联来构筑胰蛋白酶响应的双显影复合微球. 该复合微球处于自组装聚集状态时,微球内近红外荧光分子间的距离减小从而发生荧光共振能量转移,导致荧光分子的自淬灭;而在胰蛋白酶活化后的解组装状态,微球内聚赖氨酸重复单元间的酰胺键被胰蛋白酶切断,荧光分子间距扩大,共振能量转移现象消失,从而导致复合微球在胰蛋白酶存在下释放荧光,荧光释放强度/淬灭强度的比值最高可达18. 此外,自组装微球的磁共振显影同样具有胰蛋白酶敏感性,这与组装—解组装过程导致微球内磁性纳米颗粒的局部浓度及聚集状态发生变化有关. 细胞和动物实验研究表明,复合微球呈现低细胞毒性,并可特异性地对胰蛋白酶阳性的细胞和组织进行近红外/磁共振双显影,在胰蛋白酶的生物影像学检测中具有潜在的应用前景.
The trypsin-responsive near-infrared fluorescent/magnetic resonance dual-imaging composite nanospheres
which consist of PAA-decorated Fe
3
O
4
magnetic nanoparticles (MNPs) that serve as the magnetic resonance imaging (MRI) agents and Cy5.5-modified poly-L-lysine (Cy5.5-PLL) as the trypsin-responsive substrate and fluorescent carrier
were successfully fabricated
via
self-assembly method. The MNPs present negatively charge due to the carboxyl groups from PAA on their surface and the Cy5.5-PLL present positively charge due to the amino groups in PLL chains. The construction of the composite nanospheres was initially performed
via
the self-assembly driven by the electrostatic interactions between the above mentioned oppositely charged precursors. Subsequently
glutaraldehyde (GA) was introduced to partially crosslink the amino groups in PLL and stabilize the nanospheres. The fluorescent and magnetic characterization of the two precursors of the composite nanospheres
Cy5.5-PLL and MNPs
indicated that Cy5.5-PLL chains showed obvious fluorescent signal and the MNPs displayed the superparamagnetism property. However
the notable fluorescent signal from Cy5.5-PLL in native soluble state was self-quenched thanks to the short distance among the Cy5.5 fluorescent molecules after the construction of the nanospheres. Additionally
the structure of the as-prepared self-assembled nanospheres was stable
resulting from the almost unchanged results of the hydrodynamic size and fluorescence intensity of nanospheres in different buffer solutions. Nevertheless
because of the sensitivity of PLL chains to trypsin
the nanospheres were selectively disintegrated into fragmented segments under the hydrolysis by trypsin
leading to 18-fold amplification of fluorescent intensity in comparison with the self-assembled nanospheres in quenched state. Moreover
the magnetic resonance imaging enhancement was also related to the disintegration of the nanospheres. As expected
the trypsin-positive cells incubated with nanospheres exhibited remarkable fluorescent imaging due to the disintegration of the nanospheres into debris
whereas this disintegration did not take place for the trypsin-negative cells.
In vivo
fluorescent images of the composite nanospheres in normal nude mice further verified the trypsin-triggered fluorescent imaging. Cytotoxicity study demonstrated that the composite nanospheres presented low toxicity to several cell lines
and exhibited remarkable near-infrared fluorescent/magnetic resonance imaging capabilities
which were sensitive to the presence of trypsin and thus provided excellent opportunity to serve as dual-imaging agents.
聚赖氨酸蛋白酶响应性磁性纳米颗粒自组装近红外荧光/磁共振双显影
Poly-L-lysineTrypsin-responsivityMagnetite nanoparticleSelf-assemblyNear-infrared fluorescent/MRI dual imaging
Weissleder R, Pittet M J . Nature , . 2008 . 452 580 - 589.
Schnermann M J . Nature , . 2017 . 551 176 - 177.
Hong G S, Robinson J T, Zhang Y J, Diao S, Antaris A L, Wang Q B, Dai H J . Angew Chem , . 2012 . 124 9956 - 9959.
Zhang Y, Hong G S, Zhang Y J, Chen G C, Li F, Dai H J, Wang Q B . ACS Nano , . 2012 . 6 3695 - 3702.
Chen G C, Tian F, Zhang Y, Zhang Y J, Li C Y, Wang Q B . Adv Funct Mater , . 2014 . 24 2481 - 2488.
Sato R, Kozuka J, Ueda M, Mishima R, Kumagai Y, Yoshimura A, Minoshima M, Mizukami S, Kikuchi K . J Am Chem Soc , . 2017 . 139 17397 - 17404.
Dong Z L, Feng L, Hao Y, Chen M C, Gao M, Chao Y, Zhao H, Zhu W W, Liu J J, Liang C, Zhang Q, Liu Z . J Am Chem Soc , . 2018 . 140 2165 - 2178.
Long L L, Huang M Y, Wang N, Wu Y J, Wang K, Gong A H, Zhang Z J, Sessler Z L . J Am Chem Soc , . 2018 . 140 1870 - 1875.
Grenier V, Hong W, Muller V R, Miller E W . J Am Chem Soc , . 2017 . 139 17334 - 17340.
Lincoln R, Greene L E, Zhang W Z, Louisia S, Cosa G Z . J Am Chem Soc , . 2017 . 139 16273 - 16281.
Hananya N, Boock A E, Bauer C R, Fainaro R S, Shabat D . J Am Chem Soc , . 2016 . 138 13438 - 13446.
Li C Y, Zhang Y J, Wang M, Zhang Y, Chen G C, Li L, Wu D M, Wang Q B . Biomaterials , . 2014 . 35 393 - 400.
Han Z, Wu X H, Roelle S, Chen C H, Schiemann W P, Lu Z R . Nat Commun , . 2017 . 692 ( 8 ): 1 - 9.
Gao M, Fan F, Li D D, Yu Y, Mao K R, Sun T M, Qian H S, Tao W, Yang X Z . Biomaterials , . 2017 . 133 165 - 175.
Chen J W, Sun Y Q, Chen Q, Wang L, Wang S H, Tang Y, Shi X Y, Wang H . Nanoscale , . 2016 . 8 13568 - 13573.
Na J H, Lee S, Koo H, Han H, Lee K E, Han S J, Choi S H, Kim H, Lee S, Kwon I C, Choi K, Kim K . Nanoscale , . 2016 . 8 9736 - 9745.
Appel A A, Anastasio M A, Larson J C, Brey E M . Biomaterials , . 2013 . 34 6615 - 6630.
Wang Y B, Chen J W, Yang B, Qiao H Y, Gao G, Su T, Ma S, Zhang X T, Li X J, Liu G, Cao J B, Chen X Y, Chen Y D, Cao F . Theranostics , . 2016 . 6 272 - 286.
Ai P H, Wang H, Liu K, Wang T J, Gu W, Ye L, Yan C X . RSC Adv , . 2017 . 7 19954 - 19959.
Lee W S, Yoon H I, Na J H, Jeon S, Lim S, Koo H, Han S, Kang S, Park S J, Kwon I C, Kim K . Biomaterials , . 2017 . 139 12 - 29.
Qiao H Y, Wang Y B, Zhang R H, Gao Q S, Liang X, Gao L, Jiang Z H, Qiao R R, Han D, Zhang Y, Qiu Y, Tian J, Gao M Y, Cao F . Biomaterials , . 2017 . 112 336 - 345.
Ma T C, Hou Y, Zeng J F, Liu C Y, Zhang P S, Jing L H, Gao M Y . J Am Chem Soc , . 2018 . 140 211 - 218.
Liang X L, Fang L, Li X D, Zhang X, Wang F . Biomaterials , . 2017 . 132 72 - 84.
Xiang L, Tang J S . RSC Adv , . 2017 . 7 8332 - 8337.
Samanta A, Walper S A, Susumu K, Dwyere C L, Medintz I L . Nanoscale , . 2015 . 7 7603 - 7614.
Zhao Y M, Schapotschnikow P, Skajaa T, Vlugt T J, Mulder J M, Meijerink A . Small , . 2014 . 10 ( 6 ): 1163 - 1170.
Ruan S B, He Q, Gao H L . Nanoscale , . 2015 . 7 9487 - 9496.
Nyberga P, Ylipalosaaria M, Sorsac T, Salo T . Exp Cell Res , . 2006 . 312 1219 - 1228.
Li H, Wang P, Deng Y X, Zeng M Y, Tang Y, Zhu W H, Cheng Y S . Biomaterials , . 2017 . 139 30 - 38.
Song C H, Zhang Y J, Li C Y, Chen G C, Kang X F, Wang Q B . Adv Funct Mater , . 2016 . 26 4192 - 4200.
Myochin T, Hanaoka K, Komatsu T, Terai T, Nagano T . J Am Chem Soc , . 2012 . 134 13730 - 13737.
Satchi-Fainaro R, Puder M, Davies J W, Tran H T, Sampson D A, Greene A K, Corfas G, Folkman J . Nat Med , . 2004 . 10 255 - 261.
Paju A, Vartiainen J, Haglund C, Itkonen Q, Leminen A, Wahlstrom T, Stenman U . Clin Cancer Res , . 2004 . 10 4761 - 4768.
Shimizu Y, Temma T, Hara I, Makino A, Kondo N, Ozeki E, Masahiro O, Saji H . Cancer Sci , . 2014 . 105 1056 - 1062.
Guo H Z, Jiang Z Q, Song S, Dai T T, Wang X Y, Sun K, Zhou G D, Dou H J . J Colloid Interface Sci , . 2016 . 482 95 - 104.
Nguyen Q X, Belgard T G, Taylor J J, Murthy V S, Halas N J, Wong M S . Chem Mater , . 2012 . 24 1426 - 1433.
Li Yaming(李亚明), Liu Shiyong(刘世勇) . Acta Polymerica Sinica , . 2017 . ( 7 ): 1178 - 1190.
Tao K, Song S, Ding J . J Colloid Polym Sci , . 2011 . 289 ( 4 ): 361 - 36931.
Ge J P, Hu Y X, Biasini M, Dong C L, Guo J H, Beyermann W P, Yin Y D . Chem Eur J , . 2007 . 13 7153 - 7161.
Liu Y L, Wang Z K, Qin W, Hua Q L, Tang B Z . Chinese J Polym Sci , . 2017 . 35 365 - 371.
Chen J R, Zhao J, Xua B J, Yang Z Y, Liu S W, Xu J R, Zhang Y, Wu Y C, Lv P Y, Chi Z G . Chinese J Polym Sci , . 2017 . 35 282 - 292.
Ji Fan(季帆), Zeng Kai(曾恺), Zhang Kun(张坤), Li Jie(李杰), Zhang Jianfeng(张剑锋) . Acta Polymerica Sinica , . 2016 . ( 12 ): 1704 - 1709.
Villaraza A J, Bumb A, Brechbiel M W . Chem Rev , . 2010 . 110 2921 - 2959.
Abbasi A Z, Gutiérrez L A, Herranz F, Presa, P . J Phys Chem C , . 2011 . 115 6257 - 6264.
0
浏览量
29
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构