浏览全部资源
扫码关注微信
大连理工大学化工学院 精细化工国家重点实验室 大连 116024
E-mail: guofang@dlut.edu.cn Fang Guo, E-mail: guofang@dlut.edu.cn
纸质出版日期:2018-11,
收稿日期:2018-3-21,
修回日期:2018-4-8,
扫 描 看 全 文
付洪然, 宋芸芸, 任晓瑞, 郭方. 单茂钪催化月桂烯与丁二烯共聚合的研究[J]. 高分子学报, 2018,0(11):1416-1421.
Hong-ran Fu, Yun-yun Song, Xiao-rui Ren, Fang Guo. Copolymerization of Myrcene and Butadiene Catalyzed by Half-sandwich Scandium Complexes[J]. Acta Polymerica Sinica, 2018,0(11):1416-1421.
付洪然, 宋芸芸, 任晓瑞, 郭方. 单茂钪催化月桂烯与丁二烯共聚合的研究[J]. 高分子学报, 2018,0(11):1416-1421. DOI: 10.11777/j.issn1000-3304.2018.18088.
Hong-ran Fu, Yun-yun Song, Xiao-rui Ren, Fang Guo. Copolymerization of Myrcene and Butadiene Catalyzed by Half-sandwich Scandium Complexes[J]. Acta Polymerica Sinica, 2018,0(11):1416-1421. DOI: 10.11777/j.issn1000-3304.2018.18088.
采用(C
5
Me
4
SiMe
3
)Sc(CH
2
SiMe
3
)
2
(THF)(
1
)、Cp′Sc(CH
2
C
6
H
4
NMe
2
-
o
)
2
(
2
: Cp′ = C
5
Me
4
SiMe
3
;
3
: Cp′ = C
5
H
5
) 3种单茂钪催化剂,考察了其催化月桂烯均聚合以及与丁二烯共聚合的性能,并对所获聚合物的微观结构和热性能进行了分析. 结果表明,单茂钪的配体结构直接影响月桂烯聚合的选择性和分子量. 配体空间位阻较大的单茂钪
1
和
2
催化月桂烯均聚合的活性和选择性相当,获得以3
4-结构为主(61% ~ 74%)的聚月桂烯. 配体空间位阻较小的单茂钪
3
催化月桂烯均聚合的催化活性高达10
5
g polymer mol
Sc
−1
h
−1
,获得以
cis
-1
4-结构为主(95%)的聚月桂烯,聚月桂烯的玻璃化温度为−70 °C. 采用单茂钪
3
改变其与月桂烯的比例可实现对聚月桂烯分子量的有效调控(
M
n
= 7.0 × 10
4
~ 2.31 × 10
5
). 单茂钪
3
也可以催化月桂烯和丁二烯共聚合,5 min内两单体的转化率均达100%,获得与加料组成一致的月桂烯-丁二烯无规共聚物,共聚合活性高达10
5
g polymer mol
Sc
−1
h
−1
. 在本文实验范围内设计获得了月桂烯含量范围为19 mol% ~ 75 mol%、
M
n
在1.02 × 10
5
~ 2.32 × 10
5
、分子量分布在1.38 ~ 1.84的月桂烯-丁二烯无规共聚物,共聚物中两单体的1
4-选择性均大于92%. 所获不同组成的月桂烯-丁二烯共聚物只有一个玻璃化转变温度. 共聚物中月桂烯的含量由19 mol%的增加到75 mol%,共聚物的玻璃化转变温度从−95 °C增加到−71 °C.
Polymerization of myrcene and its copolymerization with butadiene by half-sandwich scandium complexes
(C
5
Me
4
SiMe
3
)Sc(CH
2
SiMe
3
)
2
(THF) (
1
) and Cp′Sc(CH
2
C
6
H
4
NMe
2
-
o
)
2
(
2
: Cp′ = C
5
Me
4
SiMe
3
;
3
: Cp′ = C
5
H
5
)
have been examined. The microstructures and thermal properties of the obtained polymers were characterized by
1
H-NMR
13
C-NMR
GPC and DSC. Significant ligand influence on the catalytic activity
selectivity
and polymer molecular weight has been observed in the homopolymerization of myrcene. The scandium complexes
1
and
2
bearing large C
5
Me
4
SiMe
3
ligand showed relatively low activity (10
4
g polymer mol
Sc
−1
h
−1
) and preferred 3
4-selectivity (74% for
1
and 61% for
2
). The myrcene homopolymers prepared by complexes
1
and
2
have low molecular weight (
M
n
= 1.7 × 10
4
− 5.6 × 10
4
) and relatively high glass transition temperature (−48 and −45 °C). The complex
3
bearing small C
5
H
5
ligand showed high activity (10
5
g polymer mol
Sc
−1
h
−1
) and high
cis
-1
4-selectivity (95%). The myrcene homopolymers prepared by complex
3
have high molecular weight (
M
n
= 7.0 × 10
4
− 2.31 × 10
5
) and low glass transition temperature (
T
g
= −70 °C). By use of complex
3
the copolymerization of myrcene with butadiene was also achieved for the first time to afford a novel family of rubber materials. The copolymerization reaction was completed within 5 min
irrespective of the monomer feed ratio
and the copolymerization activity was raised to as high as 10
5
g polymer mol
Sc
−1
h
−1
. The copolymer composition was in agreement with the co-monomer feed ratio
suggesting that both monomers were completely incorporated into their copolymers. The obtained myrcene-butadiene copolymers showed a random monomer sequence distribution
and the
cis
-1
4 contents of both monomers in the copolymers were more than 92%. All of these copolymers showed a single
T
g
varing with the myrcene/butadiene ratio. The
T
g
s of the copolymers with myrcene content of 19 mol% − 75 mol% fell in a range of −95 °C to −71 °C
which are between those of homopolymyrcene (−70 °C) and homopolybutadiene (−107 °C). The
T
g
of the copolymers decreased with increasing butadiene content. The molecular weight of the myrcene-butadiene copolymers can be controlled simply by changing the monomer/catalyst ratio.
钪月桂烯丁二烯共聚合
ScandiumMyrceneButadieneCopolymerization
Wilbon P A, Chu F, Tang C . Macromol Rapid Commun , 2013 . 34 ( 1 ): 8 - 37.
Zhao J, Schlaad H . Adv Polym Sci , 2013 . 253 ( 19 ): 151 - 190.
Nishiura M, Hou Z . Nat Chem , 2010 . 2 ( 4 ): 257 - 268.
Nishiura M, Guo F, Hou Z . Acc Chem Res , 2015 . 48 ( 8 ): 2209 - 2220.
Huang J, Liu Z, Cui D, Liu X . Chemcatchem , 2018 . 10 ( 1 ): 42 - 61.
Loughmari S, Hafid A, Bouazza A, Bouadili A E, Zinck P, Visseaux M . J Polym Sci, Part A: Polym Chem , 2012 . 50 ( 14 ): 2898 - 2905.
Loughmari S, Hafid A, Bouazza A, Bouadili A E, Zinck P, Visseaux M . J Polym Sci, Part A: Polym Chem , 2014 . 52 ( 11 ): 1642 .
Georges S, Toure A O, Visseaux M, Zinck P . Macromolecules , 2014 . 47 ( 14 ): 4538 - 4547.
Liu B, Han B, Zhang C, Li S, Sun G, Cui D . Chinese J Polym Sci , 2015 . 33 ( 5 ): 792 - 796.
Liu B, Li L, Sun G, Liu D, Li S, Cui D . Chem Commun , 2015 . 51 ( 6 ): 1039 - 1041.
Liu B, Liu D, Li S, Sun G, Cui D . Chinese J Polym Sci , 2016 . 34 ( 1 ): 104 - 110.
Luo Y, Baldamus J, Hou Z . J Am Chem Soc , 2004 . 126 ( 43 ): 13910 - 13911.
Li X, Nishiura M, Mori K, Mashiko T, Hou Z . Chem Commun , 2007 . ( 40 ): 4137 - 4139.
Guo F, Nishiura M, Koshino H, Hou Z . Macromolecules , 2011 . 44 ( 16 ): 6335 - 6344.
Chiem J C W, Tsai W M, Rausch M D . J Am Chem Soc , 1991 . 113 ( 22 ): 8570 - 8571.
Kang X, Zhou G, Wang X, Qu J, Hou Z, Luo Y . Organometallics , 2016 . 35 ( 6 ): 913 - 920.
Shi Zhenghai(史正海), Meng Rui(孟蕊), Guo Fang(郭方), Xu Qiang(许蔷), Li Tingting(李婷婷), Li Yang(李杨), Wang Yurong(王玉荣) . 高分子学报 , 2014 . ( 10 ): 1420 - 1427.
. Acta Polymerica Sinica , 2014 . ( 10 ): 1420 - 1427.
Li X, Nishiura M, Hu L, Mori K, Hou Z . J Am Chem Soc , 2009 . 131 ( 38 ): 13870 - 13882.
0
浏览量
20
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构