浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200438
E-mail: lyx@fudan.edu.cn Yi-xin Liu, E-mail: lyx@fudan.edu.cn
纸质出版日期:2018-12,
收稿日期:2018-3-29,
修回日期:2018-4-24,
扫 描 看 全 文
宋俊清, 刘一新, 张红东. 软受限条件下嵌段共聚物薄膜缺陷消除的理论研究[J]. 高分子学报, 2018,0(12):1548-1557.
Jun-qing Song, Yi-xin Liu, Hong-dong Zhang. Theoretical Study on Defect Removal in Block Copolymer Thin Films under Soft Confinement[J]. Acta Polymerica Sinica, 2018,0(12):1548-1557.
宋俊清, 刘一新, 张红东. 软受限条件下嵌段共聚物薄膜缺陷消除的理论研究[J]. 高分子学报, 2018,0(12):1548-1557. DOI: 10.11777/j.issn1000-3304.2018.18097.
Jun-qing Song, Yi-xin Liu, Hong-dong Zhang. Theoretical Study on Defect Removal in Block Copolymer Thin Films under Soft Confinement[J]. Acta Polymerica Sinica, 2018,0(12):1548-1557. DOI: 10.11777/j.issn1000-3304.2018.18097.
理解缺陷消除机理对于制备无缺陷的长程有序嵌段共聚物薄膜至关重要. 本文利用弦方法结合自洽平均场理论研究了接枝均聚物高分子刷在AB两嵌段共聚物垂直层薄膜的偶极位错缺陷消除中发挥的作用. 研究发现,高分子刷的“浸润效应”和“重排效应”能够降低
χ
AB
的有效值,增大跳跃扩散的扩散系数,进而促进“桥连”结构的形成. 并且,接枝高分子刷的基底表面的“硬度”越小,以上2种效应越显著,越能进一步降低缺陷消除过程中形成“桥连”结构这一关键步骤的能垒.
Understanding the defect removal process is crucial for the fabrication of defect-free self-assembled structures in block copolymer thin films. In this study
the removal of the dislocation dipole defect in thin films of perpendicular lamellar block copolymers on substrates modified by grafting polymers has been extensively studied. As revealed in previous studies
the " bridge” structure
which converts the slow hopping diffusion of block copolymer chains to fast interfacial diffusion
is a key factor to understand the mechanism of the defect removal process. Polymer grafting onto substrates is a widely accepted way to control domain orientation and fabricate surface pattern for directed self-assembly (DSA). However
the role of the grafted polymers on defect removal is unclear. In this study
the string method coupled with the self-consistent field theory (SCFT) is used to explore the influence of grafted polymers on the removal of a dislocation dipole in lamellar-froming thin films assembled by symmetric AB diblock copoymers. It is found that the " immersion effect” and the " rearrangement effect” introduced by the grafted polymers can facilitate the hopping diffusion of the block copolymer chains through reducing the effective
χ
AB
thus making the formation of the bridge structure easier. The decrease of the softness of the brush layer (
γ
) will enhance these two effects and reduce the energy barrier of the transition state of the defect removal process. In the limit of
γ
= 0
the bridge structure is found to already exist in the dislocation dipole near the brush layer
leading to a diminishing energy barrier of the removal process. Using the symmetric PS-
b
-PMMA with a number-average molecular weight of ≈ 5.1 × 10
4
at 195 °C as an example
we estimated the annealing time required to eliminate the dislocation dipole by assuming the diffusion coefficient of the hopping diffusion of block copolymers being
D
⊥
≈ 10
−13
cm
2
/s. The annealing time are estimated to be
τ
= 91.4 s and 150.9 s for extremely soft confinement (
γ
= 0) and intermediate soft confinement (
γ
= 30)
respectively. During the defect removal process
the brush layer will redistribute its density along the normal and the lateral directions of the substrate in response to the structural evolution of the thin film due to the " rearrangement effect”. Thus
the morphology of the brush layer reflects the microstructure of the thin film near the bottom substrate.
嵌段共聚物薄膜高分子刷缺陷消除弦方法自洽平均场理论方法
Block copolymerThin filmPolymer brushDefect removalString methodSelf-consitent field theory
Matsen M W, Bates F S . Macromolecules , 1996 . 29 ( 23 ): 7641 - 7644.
Khandpur A K, Forster S, Bates F S, Hamley I W, Ryan A J, Bras W, Almdal K, Mortensen K . Macromolecules , 1995 . 28 ( 26 ): 8796 - 8806.
Xie N, Liu M J, Deng H L, Li W H, Qiu F, Shi A C . J Am Chem Soc , 2014 . 136 ( 8 ): 2974 - 2977.
Park C, Yoon J, Thomas E L . Polymer , 2003 . 44 ( 22 ): 6725 - 6760.
Ji S X, Wan L, Liu C C, Nealey P F . Prog Polym Sci , 2016 . 54-55 76 - 127.
Li W H, Muller M . Annu Rev Chem Biomol Eng , 2015 . 6 187 - 216.
Matsen M W . J Chem Phys , 1997 . 106 ( 18 ): 7781 - 7791.
Turner M S . Phys Rev Lett , 1992 . 69 ( 12 ): 1788 - 1791.
Walton D G, Kellogg G J, Mayes A M, Lambooy P, Russell T P . Macromolecules , 1994 . 27 ( 21 ): 6225 - 6228.
Mansky P, Liu Y, Huang E, Russell T P, Hawker C J . Science , 1997 . 275 ( 5305 ): 1458 - 1460.
Han E, Stuen K O, La Y H, Nealey P F, Gopalan P . Macromolecules , 2008 . 41 ( 23 ): 9090 - 9097.
Onses M S, Ramirez-Hernandez A, Hur S M, Sutanto E, Williamson L, Alleyne A G, Nealey P F, de Pablo J J, Rogers J A . ACS Nano , 2014 . 8 ( 7 ): 6606 - 6613.
Ruiz R, Kang H M, Detcheverry F A, Dobisz E, Kercher D S, Albrecht T R, de Pablo J J, Nealey P F . Science , 2008 . 321 ( 5891 ): 936 - 939.
Liu C C, Ramirez-Hernandez A, Han E, Craig G S W, Tada Y, Yoshida H, Kang H M, Ji S X, Gopalan P, de Pablo J J . Macromolecules , 2013 . 46 ( 4 ): 1415 - 1424.
Stoykovich M P, Muller M, Kim S O, Solak H H, Edwards E W, de Pablo J J, Nealey P F . Science , 2005 . 308 ( 5727 ): 1442 - 1446.
Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G . Macromolecules , 2014 . 47 ( 1 ): 2 - 12.
Hammond M R, Cochran E, Fredrickson G H, Kramer E J . Macromolecules , 2005 . 38 ( 15 ): 6575 - 6585.
Mishra V, Fredrickson G H, Kramer E J . ACS Nano , 2012 . 6 ( 3 ): 2629 - 2641.
Nagpal U, Muller M, Nealey P F, de Pablo J J . ACS Macro Lett , 2012 . 1 ( 3 ): 418 - 422.
Li W H, Muller M . Macromolecules , 2016 . 49 ( 16 ): 6126 - 6138.
Li W H, Nealey P F, de Pablo J J, Muller M . Phys Rev Lett , 2014 . 113 ( 16 ): 168301 .
Takahashi H, Laachi N, Delaney K T, Hur S M, Weinheimer C J, Shykind D, Fredrickson G H . Macromolecules , 2012 . 45 ( 15 ): 6253 - 6265.
Hur S M, Thapar V, Ramirez-Hernandez A, Khaira G, Segal-Peretz T, Rincon-Delgadillo P A, Li W H, Muller M, Nealey P F, de Pablo J J . Proc Natl Acad Sci USA , 2015 . 112 ( 46 ): 14144 - 14149.
Yokoyama H . Mater Sci Eng R-Rep , 2006 . 53 ( 5-6 ): 199 - 248.
Lodge T P, Dalvi M C . Phys Rev Lett , 1995 . 75 ( 4 ): 657 - 660.
Meng D, Wang Q . J Chem Phys , 2007 . 126 ( 23 ): 234902 .
Trombly D M, Pryamitsyn V, Ganesan V . Macromolecules , 2011 . 44 ( 24 ): 9867 - 9881.
Trombly D M, Pryamitsyn V, Ganesan V . Phys Rev Lett , 2011 . 107 ( 14 ): 148304 .
Song J Q, Liu Y X, Zhang H D . J Chem Phys , 2016 . 145 ( 21 ): 214902 .
Hur S M, Khaira G S, Ramirez-Hernandez A, Muller M, Nealey P F, de Pablo J J . ACS Macro Lett , 2015 . 4 ( 1 ): 11 - 15.
Kim B H, Park S J, Jin H M, Kim J Y, Son S W, Kim M H, Koo C M, Shin J, Kim J U, Kim S O . Nano Lett , 2015 . 15 ( 2 ): 1190 - 1196.
Liu Y X, Zhang H D . J Chem Phys , 2014 . 140 ( 22 ): 224101 .
Chantawansri T L, Hur S M, Garcia-Cervera C J, Ceniceros H D, Fredrickson G H . J Chem Phys , 2011 . 134 ( 24 ): 244905 .
E W N, Ren W Q, Vanden-Eijnden E . J Chem Phys , 2007 . 126 ( 16 ): 164103 .
E W N, Ren W Q, Vanden-Eijnden E . Phys Rev B , 2002 . 66 ( 5 ): 052301 .
Tong Q Q, Sibener S J . Macromolecules , 2013 . 46 ( 21 ): 8538 - 8544.
Kim S O, Kim B H, Kim K, Koo C M, Stoykovich M P, Nealey P F, Solak H H . Macromolecules , 2006 . 39 ( 16 ): 5466 - 5470.
Kim B, Laachi N, Delaney K T, Carilli M, Kramer E J, Fredrickson G H . J Appl Polym Sci , 2014 . 131 ( 24 ): 40790 .
Man X K, Zhou P, Tang J Z, Yan D D, Andelman D . Macromolecules , 2016 . 49 ( 21 ): 8241 - 8248.
Man X K, Andelman D . Phys Rev E , 2012 . 86 ( 1 ): 010801 .
Cavicchi K A, Lodge T P . Macromolecules , 2004 . 37 ( 16 ): 6004 - 6012.
Harrison C, Adamson D H, Cheng Z D, Sebastian J M, Sethuraman S, Huse D A, Register R A, Chaikin P M . Science , 2000 . 290 ( 5496 ): 1558 - 1560.
Ruiz R, Sandstrom R L, Black C T . Adv Mater , 2007 . 19 ( 4 ): 587 - 591.
0
浏览量
12
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构