浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
[ "简忠保,男,1984年出生. 中国科学院长春应用化学研究所研究员,博士生导师. 2007年本科毕业于四川师范大学,2013年在中国科学院长春应用化学研究所获得高分子化学与物理专业博士学位,2013 ~ 2017年先后在德国康斯坦茨大学与明斯特大学从事博士后研究. 2017年7月加入中国科学院长春应用化学研究所高分子物理与化学国家重点实验室,开展独立研究工作. 获得的主要荣誉有:德国洪堡学者(2013年)、欧盟玛丽居里“未来精英计划”学者(2013年)、中共中央组织部国家青年千人计划(2018年). 主要研究方向为聚烯烃及绿色高分子合成. " ]
纸质出版日期:2018-11,
收稿日期:2018-6-26,
扫 描 看 全 文
简忠保. 功能化聚烯烃合成:从催化剂到极性单体设计[J]. 高分子学报, 2018,0(11):1359-1371.
Zhong-bao Jian. Synthesis of Functionalized Polyolefins: Design from Catalysts to Polar Monomers[J]. Acta Polymerica Sinica, 2018,0(11):1359-1371.
简忠保. 功能化聚烯烃合成:从催化剂到极性单体设计[J]. 高分子学报, 2018,0(11):1359-1371. DOI: 10.11777/j.issn1000-3304.2018.18146.
Zhong-bao Jian. Synthesis of Functionalized Polyolefins: Design from Catalysts to Polar Monomers[J]. Acta Polymerica Sinica, 2018,0(11):1359-1371. DOI: 10.11777/j.issn1000-3304.2018.18146.
由于极性基团的存在,烯烃与极性单体配位共聚反应受限于低聚合活性与低聚合物分子量. 因此,解决极性单体中极性基团问题是功能化聚烯烃高性能合成的关键. 本文旨在重点评述近年来后过渡金属催化烯烃与极性单体共聚制备功能化聚烯烃方面的研究进展. 首先简要概括了功能化聚烯烃合成用催化剂的里程碑式发展,然后详细论述了近年来我们在功能化聚烯烃合成用极性单体设计上的系列研究发现,重点突出了设计极性二乙烯基单体克服极性单体问题(快的链转移反应与极性基团对中心金属的螯合)的概念与设计含次级配位作用的乙烯基呋喃单体合成新型功能化聚烯烃的策略;最后展望了烯烃与极性单体共聚制备功能化聚烯烃的未来重点发展方向与挑战.
Coordination-insertion copolymerization of olefins and polar monomers for the preparation of functionalized polyolefins is one of the most important project in the field of olefin polymerization in the past twenty years. Due to the incorporation of functional groups
functionalized polyolefins
as the high value-added polymer materials
are of better surface properties and compatibility than those without any functionality
thus leading to expanding the range of applications. However
the presence of functional groups can also accelerate the chain transfer and chelate to the active central metal in the copolymerization of olefin and polar monomers
therefore this type of copolymerization suffers from lower catalytic activity and lower polymer molecular weight than the corresponding homo-polymerization of the olefins. As a result
the key for the high performance synthesis of functionalized polyolefins is to overcome the problem related to the functional groups of the polar monomers. In this Feature Article
recent research progress on the copolymerization of olefins and polar monomers to achieve the functionalized polyolefins by using late transition metal catalysts will be mostly summarized. Firstly
the milestone catalysts for the synthesis of functionalized polyolefins are introduced
and the latest research progresses on how to overcome the problem of polar monomer by designing nickel and palladium catalysts are highlighted. Then a series of our findings in recent years on the design of the polar monomers for the synthesis of functionalized polyolefins are revealed in detail
including the concept of polar di-vinyl monomers to overcome the problems related to polar monomers (rapid chain transfer reaction and chelation of functional group to active central metal) and the strategy of vinyl furan monomer with secondary coordination effect to synthesize novel functionalized polyolefins (telechelic polyolefin with two reactive endgroups). Finally
future development and long-standing challenges in the community of functionalized polyolefins by the copolymerization of olefins and polar monomers are out looked.
功能化聚烯烃后过渡金属催化剂极性单体配位插入聚合催化活性与分子量
Functionalized polyolefinLate transition metal catalystPolar monomerCoordination insertion polymerizationCatalytic activity and molecular weight
Dong J Y, Hu Y L . Coord Chem Rev , 2006 . 250 ( 1-2 ): 47 - 65.
Boaen N K, Hillmyer M A . Chem Soc Rev , 2005 . 34 ( 3 ): 267 - 275.
Franssen N M G, Reek J N H, de Bruin B . Chem Soc Rev , 2013 . 42 ( 13 ): 5809 - 5832.
Boffa L S, Novak B M . Chem Rev , 2000 . 100 ( 4 ): 1479 - 1494.
Chen E Y X . Chem Rev , 2009 . 109 ( 11 ): 5157 - 5214.
Nakamura A, Ito S, Nozaki K . Chem Rev , 2009 . 109 ( 11 ): 5215 - 5244.
Nakamura A, Anselment T M J, Claverie J, Goodall B, Jordan R F, Mecking S, Rieger B, Sen A, van Leeuwen P W N M, Nozaki K . Acc Chem Res , 2013 . 46 ( 7 ): 1438 - 1449.
Terao H, Ishii S, Mitani M, Tanaka H, Fujita T . J Am Chem Soc , 2008 . 130 ( 52 ): 17636 - 17637.
Yang X, Liu C, Wang C, Sun X, Guo Y, Wang X, Wang Z, Xie Z, Tang Y . Angew Chem Int Ed , 2009 . 48 ( 43 ): 8099 - 8102.
Chen Z, Li J, Tao W, Sun X, Yang X, Tang Y . Macromolecules , 2013 . 46 ( 7 ): 2870 - 2875.
Wang X Y, Wang Y, Shi X C, Liu J Y, Chen C L, Li Y S . Macromolecules , 2014 . 47 ( 2 ): 552 - 559.
Liu D T, Yao C G, Wang R, Wang M Y, Wang Z C, Wu C J, Lin F, Li S H, Wan X H, Cui D M . Angew Chem Int Ed , 2015 . 54 ( 17 ): 5205 - 5209.
Liu D T, Wang M Y, Wang Z C, Wu C J, Pan Y P, Cui D M . Angew Chem Int Ed , 2017 . 56 ( 10 ): 2714 - 2719.
Wang C X, Luo G, Nishiura M, Song G Y, Yamamoto A, Luo Y, Hou Z M . Sci Adv , 2017 . 3 ( 7 ): e1701011 .
Jiao Na(焦娜), Guo Fang(郭方), Li Yang(李杨) . 高分子学报 , 2017 . ( 12 ): 1922 - 1929.
Chen J, Gao Y, Wang B, Lohr T L, Marks T J . Angew Chem Int Ed , 2017 . 56 ( 50 ): 15964 - 15968.
Keim W, Kowaldt F H, Goddard R, Krüger C . Angew Chem Int Ed Engl , 1978 . 17 ( 6 ): 466 - 467.
Johnson, L K, Mecking S, Brookhart M . J Am Chem Soc , 1996 . 118 ( 1 ): 267 - 268.
Drent E, van Dijk R, van Ginkel R, van Oort B, Pugh R I . Chem Commun , 2002 . 744 - 745.
Camacho D H, Salo E V, Ziller J W, Guan Z . Angew Chem Int Ed , 2004 . 43 ( 14 ): 1821 - 1825.
Popeney C S, Camacho D H, Guan Z . J Am Chem Soc , 2007 . 129 ( 33 ): 10062 - 10063.
Vaidya T, Klimovica K, LaPointe A M, Keresztes I, Lobkovsky E B, Daugulis O, Coates G W . J Am Chem Soc , 2014 . 136 ( 20 ): 7213 - 7216.
Allen K E, Campos J, Daugulis O, Brookhart M . ACS Catal , 2015 . 5 ( 1 ): 456 - 464.
Rhinehart J L, Brown L A, Long B K . J Am Chem Soc , 2013 . 135 ( 44 ): 16316 - 16319.
Dai S Y, Sui X L, Chen C L . Angew Chem Int Ed , 2015 . 54 ( 34 ): 9948 - 9953.
Dai S Y, Chen C L . Angew Chem Int Ed , 2016 . 55 ( 42 ): 13281 - 13285.
Long B K, Eagan J M, Mulzer M, Coates G W . Angew Chem Int Ed , 2016 . 55 ( 25 ): 7106 - 7110.
Zhong L, Li G, Liang G, Gao H, Wu Q . Macromolecules , 2017 . 50 ( 7 ): 2675 - 2682.
Zhong S, Tan Y, Zhong L, Gao J, Liao H, Jiang L, Gao H, Wu Q . Macromolecules , 2017 . 50 ( 15 ): 5661 - 5669.
Guo L, Gao H, Guan Q, Hu H, Deng J, Liu J, Liu F, Wu Q . Organometallics , 2012 . 31 ( 17 ): 6054 - 6062.
Skupov K M, Marella P R, Simard M, Yap G P A, Allen N, Conner D, Goodall B L, Claverie J P . Macromol Rapid Commun , 2007 . 28 ( 20 ): 2033 - 2038.
Guironnet D, Roesle P, Rünzi T, Göttker-Schnetmann I, Mecking S . J Am Chem Soc , 2009 . 131 ( 2 ): 422 - 423.
Neuwald B, Caporaso L, Cavallo L, Mecking S . J Am Chem Soc , 2013 . 135 ( 3 ): 1026 - 1036.
Wucher P, Goldbach V, Mecking S . Organometallics , 2013 . 32 ( 16 ): 4516 - 4522.
Ota Y, Ito S, Kuroda J, Okumura Y, Nozaki K . J Am Chem Soc , 2014 . 136 ( 34 ): 11898 - 11901.
Chen M, Chen C L . ACS Catal , 2017 . 7 ( 2 ): 1308 - 1312.
Carrow B P, Nozaki K . J Am Chem Soc , 2012 . 134 ( 21 ): 8802 - 8805.
Xin B S, Sato N, Tanna A, Oishi Y, Konishi Y, Shimizu F . J Am Chem Soc , 2017 . 139 ( 10 ): 3611 - 3614.
Chen M, Chen C L . Angew Chem Int Ed , 2018 . 57 ( 12 ): 3094 - 3098.
Mitsushige Y, Yasuda H, Carrow B P, Ito S, Kobayashi M, Tayano T, Watanabe Y, Okuno Y, Hayashi S, Kuroda J, Okumura Y, Nozaki K . ACS Macro Lett , 2018 . 7 ( 3 ): 305 - 311.
Zhang Y P, Mu H L, Pan L, Wang X L, Li Y S . ACS Catal , 2018 . 8 5963 - 5976.
Yasuda H, Nakano R, Ito S, Nozaki K . J Am Chem Soc , 2018 . 140 ( 10 ): 1876 - 1883.
Chen Z, Liu W, Daugulis O, Brookhart M . J Am Chem Soc , 2016 . 138 ( 49 ): 16120 - 16129.
Chen Z, Leatherman M D, Daugulis O, Brookhart M . J Am Chem Soc , 2017 . 139 ( 44 ): 16013 - 16022.
Radlauer M R, Buckley A K, Henling L M, Agapie T . J Am Chem Soc , 2013 . 135 ( 10 ): 3784 - 3787.
Takeuchi D, Chiba Y, Takano S, Osakada K . Angew Chem Int Ed , 2013 . 52 ( 48 ): 12536 - 12540.
Takano S, Takeuchi D, Osakada K, Akamatsu N, Shishido A . Angew Chem Int Ed , 2014 . 53 ( 35 ): 9246 - 9250.
Li M, Wang X B, Luo Y, Chen C L . Angew Chem Int Ed , 2017 . 56 ( 38 ): 11604 - 11609.
Zhang D, Chen C L . Angew Chem Int Ed , 2017 . 56 ( 46 ): 14672 - 14676.
Chen M, Yang B P, Chen C L . Angew Chem Int Ed , 2015 . 54 ( 51 ): 15520 - 15524.
Mu H L, Pan L, Song D P, Li Y S . Chem Rev , 2015 . 115 ( 22 ): 12091 - 12137.
Guo L H, Liu W J, Chen C L . Mater Chem Front , 2017 . 1 ( 12 ): 2487 - 2494.
Chen C L . Nat Rev Chem , 2018 . 2 ( 5 ): 6 - 14.
Chen C L . ACS Catal , 2018 . 8 ( 6 ): 5506 - 5514.
Daigle J C, Piche L, Arnold A, Claverie J P . ACS Macro Lett , 2012 . 1 ( 3 ): 343 - 346.
Rünzi T, Guironnet D, Göttker-Schnetmann I, Mecking S . J Am Chem Soc , 2010 . 132 ( 46 ): 16623 - 16630.
Jian Z, Baier M C, Mecking S . J Am Chem Soc , 2015 . 137 ( 8 ): 2836 - 2839.
Jian Z, Mecking S . Angew Chem Int Ed , 2015 . 54 ( 52 ): 15845 - 15849.
Wimmer F P, Caporaso L, Cavallo L, Mecking S, Falivene L . Macromolecules , 2018 . 51 ( 12 ): 4525 - 4531.
Luo S, Vela J, Lief G R, Jordan R F . J Am Chem Soc , 2007 . 129 ( 29 ): 8946 - 8947.
Chen C L, Luo S, Jordan R F . J Am Chem Soc , 2010 . 132 ( 14 ): 5273 - 5284.
Jian Z, Mecking S . Macromolecules , 2016 . 49 ( 42 ): 4395 - 4403.
Jian Z, Falivene L, Boffa G, Ortega Sánchez S, Caporaso L, Grassi A, Mecking S . Angew Chem Int Ed , 2016 . 55 ( 46 ): 14378 - 14383.
Dai S Y, Zhou S X, Zhang W, Chen C L . Macromolecules , 2016 . 49 ( 23 ): 8855 - 8862.
Na Y N, Dai S Y, Chen C L . Macromolecules , 2018 . 51 ( 12 ): 4040 - 4048.
0
浏览量
84
下载量
18
CSCD
关联资源
相关文章
相关作者
相关机构