浏览全部资源
扫码关注微信
1.高分子合成与功能构造教育部重点实验室 浙江大学高分子科学与工程学系 杭州 310027
2.无限极(中国)有限公司 广州 510623
E-mail: dumiao@zju.edu.cn
纸质出版日期:2019-1,
网络出版日期:2018-10-19,
收稿日期:2018-7-5,
修回日期:2018-8-29,
扫 描 看 全 文
陈璐, 张振华, 罗绍强, 高颖, 张晨, 胡流云, 杜淼, 宋义虎, 郑强. 丙烯酸羟乙酯/丙烯酰二甲基牛磺酸钠共聚物流变行为的研究[J]. 高分子学报, 2019,50(1):91-98.
Lu Chen, Zhen-hua Zhang, Shao-qiang Luo, Ying Gao, Chen Zhang, Liu-yun Hu, Miao Du, Yi-hu Song, Qiang Zheng. Rheological Behavior of Hydroxyethylacrylate/Sodium Acryloyldimethyl Taurate Copolymer Aqueous Solution[J]. Acta Polymerica Sinica, 2019,50(1):91-98.
陈璐, 张振华, 罗绍强, 高颖, 张晨, 胡流云, 杜淼, 宋义虎, 郑强. 丙烯酸羟乙酯/丙烯酰二甲基牛磺酸钠共聚物流变行为的研究[J]. 高分子学报, 2019,50(1):91-98. DOI: 10.11777/j.issn1000-3304.2018.18156.
Lu Chen, Zhen-hua Zhang, Shao-qiang Luo, Ying Gao, Chen Zhang, Liu-yun Hu, Miao Du, Yi-hu Song, Qiang Zheng. Rheological Behavior of Hydroxyethylacrylate/Sodium Acryloyldimethyl Taurate Copolymer Aqueous Solution[J]. Acta Polymerica Sinica, 2019,50(1):91-98. DOI: 10.11777/j.issn1000-3304.2018.18156.
考察了丙烯酸羟乙酯/丙烯酰二甲基牛磺酸钠共聚物(EMT-10)水溶液的流变行为. 研究发现,在水溶性聚合物EMT-10中同时存在疏水缔合、氢键相互作用及静电相互作用,这3种作用使其水溶液流变行为变得复杂. 分子内氢键及静电相互作用促进了分子内疏水缔合,使EMT-10水溶液在极低的浓度下显示出疏水微区. 分子链间氢键、静电及疏水缔合的耦合形成分子间强相互作用,使EMT-10水溶液在亚浓非缠结区和缠结区,增比黏度(
η
ap
)与浓度(
c
)之间的标度关系均远高于中性聚合物和聚电解质溶液,
η
ap
对
c
更为敏感. 复杂的结构和多重相互作用使EMT-10水溶液在较高浓度下体现出二次屈服现象. 同时,EMT-10水溶液的黏度对温度不敏感. 表面活性剂、尿素、小分子盐均可使1.5 wt% EMT-10水溶液黏度降低,其中小分子盐影响最大.
The rheological behaviors of hydroxyethylacrylate/sodium acryloyldimethyl taurate copolymer (EMT-10) in aqueous solution have been investigated systematically. EMT-10 has been widely used as a cosmetics thickener for its excellent emulsibility/stability at relatively low content; besides
its capability of persistent thickening effect over a broad variety of novel chemical structures is conducive to their perfect compatibility with specific active ingredients. Both pyrene fluorescence observation and rheological behavior revealed that hydrogen bonding and electrostatic interactions could enhance the intramolecular hydrophobic associations among EMT-10 macromolecules in the solution system
which led to the formation of hydrophobic microdomains within EMT-10 molecules even at ultra-low concentration. In the meantime
EMT-10’s thickening capability could be promoted by the synergism of these three interactions
i.e.
intermolecular hydrophobic associations
hydrogen bonding interaction
and electrostatic interaction. The viscosity of EMT-10 aqueous solution exhibited higher scaling value against concentration than neutral polymer and polyelectrolyte solutions did in the unentangled semidilute solution and entangled semidilute solution regions. Moreover
it was insensitive to temperature due to the counteracting effect between hydrophobic interaction and hydrogen bonding interaction. Yielding occurred when solution concentration was higher than 0.3 wt% and the yielding stress increased with mounting concentration. Dual yielding behaviors showed up at solution concentration above 1 wt%
of which the second yielding was related to the formation and breakup of clusters that resulted from intramolecular hydrophobic associations and hydrogen bonding interaction under high shearing. Various additives could affect the rheological behaviors of EMT-10 solution remarkably. Viscosity of 1.5 wt% EMT-10 solution decreased with the addition of surfactants
urea
and salt
among which salt exhibited a sharp reducing effect. Compared with poly(vinyl alcohol) and poly(ethylene oxide)
EMT-10 implicated strong intermolecular interactions including chain entanglements
electrostatic interaction
hydrophobic interaction
and hydrogen bonding interaction.
流变行为氢键作用疏水缔合静电相互作用
Rheological behaviorHydrogen bonding interactionHydrophobic associationElectrostatic interaction
Stern P . Rheol Acta , 1988 . 27 ( 4 ): 448 - 448.
Pickering S U . J Chem Soc , 1907 . 91 2001 - 2021 . DOI:10.1039/CT9079102001http://doi.org/10.1039/CT9079102001 .
. China Surfac Deterg Cosmet(日用化学工业) , 2003 . 33 ( 1 ): 44 - 48.
. China Surfac Deterg Cosmet(日用化学工业) , 2017 . 47 ( 6 ): 341 - 344.
Kalyanasundaram K, Thomas J K . J Am Chem Soc , 1977 . 99 ( 7 ): 2039 - 2044 . DOI:10.1021/ja00449a004http://doi.org/10.1021/ja00449a004 .
Du M, Ma Y J, Su H, Wang X, Zheng Q . RSC Adv , 2015 . 5 ( 43 ): 33905 - 33913 . DOI:10.1039/C5RA05017Khttp://doi.org/10.1039/C5RA05017K .
Su H, Wang X, Du M, Song Y H, Zheng Q . RSC Adv , 2016 . 6 ( 7 ): 5695 - 5702 . DOI:10.1039/C5RA24777Bhttp://doi.org/10.1039/C5RA24777B .
Cross M M . J Colloid Sci , 1965 . 20 ( 5 ): 417 - 437 . DOI:10.1016/0095-8522(65)90022-Xhttp://doi.org/10.1016/0095-8522(65)90022-X .
Dou S, Colby R H . J Polym Sci, Part B: Polym Phys , 2006 . 44 ( 14 ): 2001 - 2013 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488 .
Konop A J, Colby R H . Langmuir , 1999 . 15 ( 1 ): 58 - 65 . DOI:10.1021/la980782yhttp://doi.org/10.1021/la980782y .
Emady H, Caggioni M, Spicer P . J Rheol , 2013 . 57 ( 6 ): 1761 - 1772 . DOI:10.1122/1.4824471http://doi.org/10.1122/1.4824471 .
Pierre-Gilles de Gennes. Scaling Concepts in Polymer Physics. Ithaca: Cornell University Press, 1979. 221 – 222
Gouveia L M, Muller A J . Rheol Acta , 2009 . 48 ( 2 ): 163 - 175 . DOI:10.1007/s00397-008-0319-7http://doi.org/10.1007/s00397-008-0319-7 .
Aditya J, Wee M, Matia-Merino L, Goh K K T, McKinley G H . Carbohydr Polym , 2015 . 123 136 - 145 . DOI:10.1016/j.carbpol.2015.01.006http://doi.org/10.1016/j.carbpol.2015.01.006 .
Terech P, Dourdain S, Maitra U, Bhat S . J Phys Chem B , 2009 . 113 ( 14 ): 4619 - 4630 . DOI:10.1021/jp809336ghttp://doi.org/10.1021/jp809336g .
Williams P A. Food Emulsions: Principles, Practice, and Techniques. Oxford: Blackwell Science Ltd. 223 – 224
Goddard E D, Hannan R B . J Am Oil Chem Soc , 1997 . 54 ( 12 ): 561 - 566.
Vakarelski I U, Brown S C, Rabinovich Y I, Moudgil B M . Langmuir , 2004 . 20 ( 5 ): 1724 - 1731 . DOI:10.1021/la0352873http://doi.org/10.1021/la0352873 .
. Acta Polymerica Sinica(高分子学报) , 2015 . ( 10 ): 1216 - 1222.
. Appl Chem Ind(应用化工) , 2012 . 41 ( 5 ): 791 - 793.
0
浏览量
21
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构