浏览全部资源
扫码关注微信
1.江苏省环境友好高分子材料重点实验室 常州大学材料科学与工程学院 江苏省光伏科学与工程协同创新中心 常州 213164
2.常州大学怀德学院 靖江 214500
E-mail: jiangbibiao@cczu.edu.cn Bi-biao Jiang, E-mail: jiangbibiao@cczu.edu.cn
纸质出版日期:2019-2,
网络出版日期:2018-10-12,
收稿日期:2018-8-13,
修回日期:2018-9-5,
扫 描 看 全 文
徐炜琴, 梁天, 杨宏军, 薛小强, 黄文艳, 蒋其民, 蒋必彪. 膦腈碱催化一步合成聚氧化苯乙烯大分子单体及其接枝共聚[J]. 高分子学报, 2019,50(2):118-123.
Wei-qin Xu, Tian Liang, Hong-jun Yang, Xiao-qiang Xue, Wen-yan Huang, Qi-min Jiang, Bi-biao Jiang. One-step Synthesis of Poly(styrene oxide) Macromonomers Catalyzed by Phosphazene Base and Graft Copolymerization[J]. Acta Polymerica Sinica, 2019,50(2):118-123.
徐炜琴, 梁天, 杨宏军, 薛小强, 黄文艳, 蒋其民, 蒋必彪. 膦腈碱催化一步合成聚氧化苯乙烯大分子单体及其接枝共聚[J]. 高分子学报, 2019,50(2):118-123. DOI: 10.11777/j.issn1000-3304.2018.18180.
Wei-qin Xu, Tian Liang, Hong-jun Yang, Xiao-qiang Xue, Wen-yan Huang, Qi-min Jiang, Bi-biao Jiang. One-step Synthesis of Poly(styrene oxide) Macromonomers Catalyzed by Phosphazene Base and Graft Copolymerization[J]. Acta Polymerica Sinica, 2019,50(2):118-123. DOI: 10.11777/j.issn1000-3304.2018.18180.
以4-乙烯基苄醇(VBA)为引发剂,膦腈碱
t
-BuP
4
为催化剂,室温下催化氧化苯乙烯(SO)进行开环聚合一步合成聚氧化苯乙烯(PSO)大分子单体. PSO大分子单体与甲基丙烯酸甲酯(MMA)在不同温度下进行自由基共聚合成接枝共聚物. 用核磁(
1
H-NMR)、凝胶渗透色谱(GPC)、示差扫描量热仪(DSC)等对引发剂和聚合物结构及性能进行表征分析. 结果表明成功合成了功能引发剂VBA.
t
-BuP
4
能顺利催化SO聚合一步合成结构可控的PSO大分子单体,大分子单体PSO与MMA可以顺利共聚合成接枝共聚物. GPC和
1
H-NMR分析表明:合成的大分子单体中约有4.0%的惰性组分. DSC测得共聚物只有1个玻璃化转变温度,而且与理论计算值相吻合.
Poly(styrene oxide) (PSO) macromonomers were synthesized in one step through the anionic ring-opening polymerization (ROP) of styrene oxide (SO) at room temperature
with 1-
tert
-butyl-4
4
4-tris(dimethylamino)-2
2-bis[tris(dimethylamino)-phosphoranylidenamino]-2Ʌ
5
4Ʌ
5
-catenadi-(phosphazene) (
t
-BuP
4
) as the catalyst
and 4-vinylbenzyl alcohol (VBA) as the functional initiator. The copolymerization of PSO macromonomers and methyl methacrylate (MMA) was carried out at different temperatures through free radical co-polymerization to prepare graft copolymers. The structures and properties of the functional initiator
the obtained macromonomers and the grafted copolymers were characterized by nuclear magnetic resonance spectroscopy (NMR)
gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The results showed that functional initiator VBA was synthesized successfully. Super base
t
-BuP
4
displayed high catalytic activity for the ring-opening polymerization of SO
resulting in PSO macromonomers with polymerizable vinyl group
controlled molecular weight (
M
n
= 2700 – 11300 g/mol)
and narrow molecular weight distribution (
<
1.19). NMR measurement confirmed that the copolymerization of PSO macromonomers and MMA was carried out successfully to produce grafted copolymers. With the increase of copolymerization temperature
the conversion of MMA increased (
>
96%)
while the molecular weight of the copolymers decreased and the molecular weight distribution became narrow. The GPC curves of the product for the copolymerization before precipitation were bimodal
the molecular weight of the obtained polymers was low (6200 – 7800 g/mol) and the molecular weight distribution was wide (6.39 – 10.41). After precipitation
the GPC curves showed a unimodal signal
the molecular weight became larger (4.33 × 10
4
– 5.95 × 10
4
g/mol) and the molecular weight distribution became narrower (1.46 – 1.62). Integral calculation of the GPC curves and NMR measurement confirmed that there were about 3.8% – 4.6% inert components in the synthesized macromonomers. For the thermal analysis of PSO
PMMA-
g
-PSO and PMMA
the glass transition temperature (
T
g
) measured by DSC showed that the prepared grafted copolymer had only one
T
g
which was in good accordance with the theoretical value calculated according to the Fox equation. This result further proved that the graft copolymers were successfully prepared.
大分子单体接枝共聚膦腈碱一步法
MacromonomerGraft copolymerizationPhosphazene baseOne-step method
Zhang S S, Tezuka Y, Zhang Z B, Li N, Zhang W, Zhu X L . Polym Chem , 2018 . 9 ( 6 ): 677 - 686 . DOI:10.1039/C7PY01544Ehttp://doi.org/10.1039/C7PY01544E .
Feng C, Li Y J, Yang D, Hu J H, Zhang X H, Huang X Y . Chem Soc Rev , 2011 . 40 ( 3 ): 1282 - 1295 . DOI:10.1039/B921358Ahttp://doi.org/10.1039/B921358A .
Zeigler D F, Mazzio K A, Luscombe C K . Macromolecules , 2014 . 47 ( 15 ): 5019 - 5028 . DOI:10.1021/ma5009435http://doi.org/10.1021/ma5009435 .
Liang X Y, Liu Y J, Huang J, Wei L H, Wang G W . Polym Chem , 201 . 6 ( 3 ): 6466 - 6475.
Sun F X, Lu G L, Feng C, Li Y J, Huang X Y . Polym Chem , 2017 . 8 ( 2 ): 431 - 440 . DOI:10.1039/C6PY01595Fhttp://doi.org/10.1039/C6PY01595F .
Rooney T R, Monyatsi O, Hutchinson R A . Macromolecules , 2017 . 50 ( 3 ): 784 - 795 . DOI:10.1021/acs.macromol.6b02297http://doi.org/10.1021/acs.macromol.6b02297 .
Schiefer D, Hanselmann R, Sommer M . Polym Chem , 2017 . 8 ( 30 ): 4368 - 4377 . DOI:10.1039/C7PY00612Hhttp://doi.org/10.1039/C7PY00612H .
Li H, Miao H, Gao Y, Li H M, Chen D Y . Polym Chem , 2016 . 7 ( 27 ): 4476 - 4485 . DOI:10.1039/C6PY00705Hhttp://doi.org/10.1039/C6PY00705H .
Sato E, Zetterlund P B, Yamada B . Macromolecules , 2004 . 37 ( 7 ): 2363 - 2370 . DOI:10.1021/ma0352734http://doi.org/10.1021/ma0352734 .
Schreur-Piet I, Heuts J P A . Polym Chem , 2017 . 8 ( 43 ): 6654 - 6664 . DOI:10.1039/C7PY01583Fhttp://doi.org/10.1039/C7PY01583F .
Vandenbergh J, Junkers T . Macromolecules , 2013 . 46 ( 9 ): 3324 - 3331 . DOI:10.1021/ma400477thttp://doi.org/10.1021/ma400477t .
Teo Y C, Xia Y . Macromolecules , 2015 . 48 ( 16 ): 5656 - 5662 . DOI:10.1021/acs.macromol.5b01176http://doi.org/10.1021/acs.macromol.5b01176 .
Zhao N, Ren C L, Li H K, Li Y X, Liu S F, Li Z B . Angew Chem Int Ed , 2017 . 129 ( 56 ): 13167 - 13170.
Li H K, Zhao N, Ren C L, Liu S F, Li Z B . Polym Chem , 2017 . 8 ( 47 ): 7369 - 7374 . DOI:10.1039/C7PY01673Ehttp://doi.org/10.1039/C7PY01673E .
Hu X, Zhang Y J, Cui G P, Zhu N, Guo K . Macromol Rapid Commun , 2017 . 38 ( 21 ): 1700399 DOI:10.1002/marc.v38.21http://doi.org/10.1002/marc.v38.21 .
Liu J J, Chen C, Li Z J, Wu W Z, Zhi X, Zhang Q G, Wu H, Wang X, Cui S, Guo K . Polym Chem , 2015 . 6 ( 20 ): 3754 - 3757 . DOI:10.1039/C5PY00508Fhttp://doi.org/10.1039/C5PY00508F .
Chen J L, Li M S, He W J, Tao Y H, Wang X H . Macromolecules , 2017 . 50 ( 23 ): 9128 - 9134 . DOI:10.1021/acs.macromol.7b02331http://doi.org/10.1021/acs.macromol.7b02331 .
Wang J, Li B X, Xin D H, Hu R R, Zhao Z J, Qin A J, Tang B Z . Polym Chem , 2017 . 8 ( 17 ): 2713 - 2722 . DOI:10.1039/C7PY00363Chttp://doi.org/10.1039/C7PY00363C .
Hong M, Tang X Y, Newell B S, Chen E Y X . Macromolecules , 2017 . 50 ( 21 ): 8469 - 8479 . DOI:10.1021/acs.macromol.7b02174http://doi.org/10.1021/acs.macromol.7b02174 .
Zhang H X, Hu S Y, Zhao J P, Zhang G Z . Macromolecules , 2017 . 50 ( 11 ): 4198 - 4205 . DOI:10.1021/acs.macromol.7b00599http://doi.org/10.1021/acs.macromol.7b00599 .
Zhang J, Liu Q, Ren H J, Zhang N J, Li P F, Yang K . J Mole Struc , 2017 . 1148 421 - 428 . DOI:10.1016/j.molstruc.2017.05.094http://doi.org/10.1016/j.molstruc.2017.05.094 .
Yang H J, Xu J B, Pispas S, Zhang G Z . Macromolecules , 2012 . 45 ( 8 ): 3312 - 3317 . DOI:10.1021/ma300291qhttp://doi.org/10.1021/ma300291q .
Zhang Guangzhao(张广照) . 高分子学报 , Acta Polymerica Sinica , 2018 . ( 6 ): 668 - 673.
Yang H J, Bai T, Xue X Q, Huang W Y, Chen J H, Qian X L, Zhang G Z, Jiang B B . RSC Adv , 2015 . 5 ( 74 ): 60401 - 60408 . DOI:10.1039/C5RA09851Chttp://doi.org/10.1039/C5RA09851C .
Yang H J, Bai T, Xue X Q, Huang W Y, Chen J H, Qian X L, Zhang G Z, Jiang B B . Polymer , 2015 . 72 63 - 68 . DOI:10.1016/j.polymer.2015.06.048http://doi.org/10.1016/j.polymer.2015.06.048 .
Yang H J, Sun A B, Chai C Q, Huang W Y, Xue X Q, Chen J, Jiang B B . Polymer , 2017 . 121 256 - 261 . DOI:10.1016/j.polymer.2017.06.029http://doi.org/10.1016/j.polymer.2017.06.029 .
Hong M, Chen E Y . Angew Chem Int Ed , 2016 . 128 ( 13 ): 4188 - 4193.
Wang D, Hadjichristidis N . Chem Commun , 2017 . 53 ( 6 ): 1196 - 1199 . DOI:10.1039/C6CC09047Hhttp://doi.org/10.1039/C6CC09047H .
Qiao Z Y, Du F S, Zhang R, Liang D H, Li Z C . Macromolecules , 2010 . 43 ( 15 ): 6485 - 6494 . DOI:10.1021/ma101090ghttp://doi.org/10.1021/ma101090g .
0
浏览量
15
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构