浏览全部资源
扫码关注微信
1.复旦大学高分子科学系 聚合物分子工程国家重点实验室 上海 200438
2.复旦大学生命科学学院 上海 200438
E-mail: yuding@fudan.edu.cn
E-mail: guosong@fudan.edu.cn
纸质出版日期:2019-2,
网络出版日期:2019-1-4,
收稿日期:2018-9-23,
修回日期:2018-11-15,
扫 描 看 全 文
胡榕婷, 王珏, 杨静, 丁澦, 陈国颂. 基于多重非共价相互作用的荧光融合蛋白质微米环[J]. 高分子学报, 2019,50(2):135-146.
Rongting Hu, Jue Wang, Jing Yang, Yu Ding, Guosong Chen. Micro Rings Self-assembled by Fluorescent Fusion-protein Based on Multiple Non-covalent Interactions[J]. Acta Polymerica Sinica, 2019,50(2):135-146.
胡榕婷, 王珏, 杨静, 丁澦, 陈国颂. 基于多重非共价相互作用的荧光融合蛋白质微米环[J]. 高分子学报, 2019,50(2):135-146. DOI: 10.11777/j.issn1000-3304.2018.18204.
Rongting Hu, Jue Wang, Jing Yang, Yu Ding, Guosong Chen. Micro Rings Self-assembled by Fluorescent Fusion-protein Based on Multiple Non-covalent Interactions[J]. Acta Polymerica Sinica, 2019,50(2):135-146. DOI: 10.11777/j.issn1000-3304.2018.18204.
利用蛋白质融合技术,将绿色荧光蛋白(GFP)与可二聚化的链酶亲和素突变体(SA)融合,形成二聚化融合蛋白质GFP-SA,并以此作为生物大分子自组装的构筑基元. 同时,设计并合成了相应的配体分子RhYBio
2
,该配体中的2个生物素分子能特异性结合相邻融合蛋白中的SA,并将2个以上的二聚化融合蛋白GFP-SA排列成纳米线,随后该纳米线再通过配体中的罗丹明B分子二聚,进一步组装形成荧光蛋白质微米环. 采用动态光散射(DLS)对其粒径及分布进行了表征,并利用透射电子显微镜(TEM)和激光共聚焦显微镜(confocal microscope)观察了组装体的形貌,即蛋白质微米环,其形貌规整并具有较强的荧光.
Proteins are attractive building blocks for construction of variant functional materials because of their chemical and structural diversities
and intrinsic functions. As the industry of biotechnology continues to expand
so does the expression of recombinant proteins with wide varieties. In this work
we adopted the recombinant protein technique to construct a new fusion protein
GFP-SA
as the building block of self-assemblies. The purification of GFP-SA was characterized by Superdex 75 size exclusive chromatography
SDS-PAGE
and MALDI-TOF. Then
GPC and native-PAGE were used to characterize the dimerization of GFP-SA based on the hydrogen bonds between neighboring SAs. Furthermore
ITC was employed to test the binding ability between GFP-SA and biotin
which revealed
K
D
= 0.24 μmol/L. In this study
we also designed and successfully synthesized the ligand RhYBio
2
which is composed of two biotin molecules and one rhodamine B molecule. The size of GFP-SA increased rapidly to 370 nm within one minute after mixing with RhYBio
2.
We measured the particle size of GFP-SA/RhYBio
2
mixture every few minutes until the size stabilized at around 1300 nm 2 h later. However
size variation was barely observed for the controlled samples of SA/RhYBio2 (controlled protein) and GFP-SA/YBio (controlled ligand). We hypothesized that the two biotin molecules of RhYBio
2
could bind specifically with SA and align GFP-SA/RhYBio
2
into nanowires
which assembled further into micro rings. Their size was measured by dynamic light scattering (DLS) while the morphology was observed intuitively on a transmission electron microscope (TEM) and a confocal microscope (CM). The characteristic results from TEM and CM suggested an uneven size distribution of the micro rings prepared
which might be attributable to the flexibility of the fusion protein GFP-SA. These micro rings of GFP-SA/RhYBio
2
with fluorescence has great potential for biological applications.
融合蛋白绿色荧光蛋白自组装微米环
Fusion proteinGFPSelf-assemblyMicro rings
Sinclair J C, Davies K M, Venien-Bryan C, Noble M E M . Nat Nanotechnol , 2011 . 9 558 - 562.
Ringler P, Schulz G E . Science , 2003 . 5642 106 - 109.
Padilla J E, Colovos C, Yeates T O . Proc Natl Acad Sci USA , 2001 . 5 2217 - 2221.
Lai Y T, King N P, Yeates T O . Trends Cell Biol , 2012 . 12 653 - 661.
Bai Y, Luo Q, Liu J . Chem Soc Rev , 2016 . 10 2756 - 2767.
Lin Mingchang(林铭昌), Chen Guosong(陈国颂) . Acta Polymerica Sinica(高分子学报) , 2017 . ( 7 ): 1114 - 1120.
Meng Jianqiang(孟建强), Dong Yongquan(董永全), Li Zichen(李子臣) . Acta Polymerica Sinica(高分子学报) , 2010 . ( 5 ): 550 - 555.
Oohora K, Burazerovic S, Onoda A, Wilson Y M, Ward T R, Hayashi T . Angew Chem Int Ed , 2012 . 16 3818 - 3821.
Kostiainen M A, Kasyutich O, Cornelissen J J, Nolte R J . Nat Chem , 2010 . 5 394 - 399.
Kostiainen M A, Hiekkataipale P, Laiho A, Lemieux V, Seitsonen J, Ruokolainen J, Ceci P . Nat Nanotechnol , 2013 . 1 52 - 56.
Miao L, Han J, Zhang H, Zhao L, Si C, Zhang X, Hou C, Luo Q, Xu J, Liu J . ACS Nano , 2014 . 4 3743 - 3751.
Salgado E N, Radford R J, Tezcan F A . Acc Chem Res , 2010 . 5 661 - 672.
Brodin J D, Ambroggio X I, Tang C, Parent K N, Baker T S, Tezcan F A . Nat Chem , 2012 . 5 375 - 382.
Biswas S, Kinbara K, Oya N, Ishii N, Taguchi H, Aida T . J Am Chem Soc , 2009 . 22 7556 - 7557.
Bai Y, Luo Q, Zhang W, Miao L, Xu J, Li H, Liu J . J Am Chem Soc , 2013 . 30 10966 - 10969.
Sakai F, Yang G, Weiss M S, Liu Y, Chen G, Jiang M . Nat Commun , 2014 . 4634 .
Yang G, Zhang X, Kochovski Z, Zhang Y F, Dai B, Sakai F J, Jiang L, Lu Y, Ballauff M, Li X M, Liu C, Chen G S, Jiang M . J Am Chem Soc , 2016 . 6 1932 - 1937.
Yang G, Ding H M, Kochovski Z, Hu R T, Lu Y, Ma Y Q, Chen G S, Jiang M . Angew Chem Int Ed , 2017 . 36 10691 - 10695.
Yang G, Hu R T, Ding H M, Kochovski Z, Mei S L, Lu Y, Ma Y Q, Chen G S, Jiang M . Mat Chem Front , 2018 . 9 1642 - 1646.
Qi W J, Zhang Y F, Kochovski Z, Wang J, Lu Y, Chen G S, Jiang M . Nano Res , 2018 . 10 5566 - 5572.
Xu M, Liu L, Yan Q . Angew Chem Int Ed , 2018 . 18 5029 - 5032.
O'Sullivan V J, Barrette-Ng I, Hommema E, Hermanson G T, Schofield M, Wu S C, Honetschlaeger C, Ng K K S, Wong S L . Plos One , 2012 . 4 e35203 .
Qureshi M H, Yeung J C, Wu S C, Wong S L . J Biol Chem , 2001 . 49 46422 - 46428.
0
浏览量
25
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构