浏览全部资源
扫码关注微信
1.上海师范大学化学与材料科学学院 上海 200235
2.中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
E-mail: miaohong@sioc.ac.cn Miao Hong, E-mail: miaohong@sioc.ac.cn
纸质出版日期:2019-4,
网络出版日期:2019-1-17,
收稿日期:2018-11-3,
修回日期:2018-12-4,
扫 描 看 全 文
袁鹏俊, 洪缪. “非张力环”
Peng-jun Yuan, Miao Hong. Ring-opening Polymerizations of the “Non-strained”
袁鹏俊, 洪缪. “非张力环”
Peng-jun Yuan, Miao Hong. Ring-opening Polymerizations of the “Non-strained”
由于其独特的可降解性和生物相容性,脂肪族聚酯被广泛地应用于生物医药、组织工程、包装等领域,环内酯 (如
ε
-己内酯,丙交酯等) 的开环聚合是制备高分子量脂肪族聚酯的有效方法,但受到环内酯单体种类的限制.
γ
-丁内酯 (
γ
-BL)可由生物质转化合成得到,具有可再生的绿色来源,价格低廉,是非常有潜力的环内酯单体,然而由于其五元环的热力学稳定性,在以往的教科书和文献中通常把
γ
-BL称为是“不可聚合的”单体. 2016年,Hong和Chen通过控制热力学和动力学等条件首次实现了
γ
-BL在温和条件下的高效开环聚合,并为制备绿色可回收高分子材料提供了新思路,该突破性工作迅速地引起了科研界的关注,并由此发展出了可进行
γ
-BL高效可控开环聚合的催化剂,单体范围也扩展到了
γ
-BL的衍生物,合成得到了结构新颖的高性能高分子材料. 本文系统地综述近3年来这一领域的研究进展,侧重于讨论其催化剂结构与聚合行为、聚合物结构与聚合物性能之间的关系,以及后续的回收行为,并提出该领域存在的挑战以及未来的发展方向.
Aliphatic polyesters are a class of technologically important biodegradable and/or biocompatible polymers and have realized wide applications in biological medicine
temporary implants for tissue engineering
and packaging. Ring-opening polymerization (ROP) has proven to be a powerful methodology to prepare large-scale polyesters with different structures and properties. However
up to date
the monomers suitable for ROP are only restricted to the cyclic esters or lactones with a relatively high strain energy
which greatly limits the development and application of this methodology. Biomass-derived
γ
-butyrolactone (
γ
-BL)
commercially available at a low price
would be a desirable monomer for ROP
but it is commonly referred as "non-polymerizable" in textbooks and the literature due to low strain energy of its five-membered ring. In 2016
Hong and Chen
et al
. established the first efficient ROP of
γ
-BL under mild conditions by controlling thermodynamics and kinetic conditions
which also provided a new approach for recyclable polymers. This breakthrough work attracted the attention of the scientific researchers in a short time
and a series of new catalysts have been developed for the ROP of
γ
-BL and its derivatives. In this context
this review article systematically summarizes the progress of the emerging area in the past three years by focusing on the discussion of the relationship between the catalyst structure and polymerization behavior
the structure-dependent polymer properties
as well as the recyclability of the resultant polymers. The currently unmet challenges in this field
and thus the suggested corresponding future research directions
are also presented.
开环聚合脂肪族聚酯可降解高分子可回收高分子生物质来源化合物γ-丁内酯
Ring-opening polymerizationAliphatic polyestersDegradable polymersRecyclable polymersBiomass-derived chemicalγ-Butyrolactone
Hillmyer M A, Tolman W B . Acc Chem Res , 2014 . 47 2390 - 2396 . DOI:10.1021/ar500121dhttp://doi.org/10.1021/ar500121d .
Sarazin Y, Carpentier J F . Chem Rev , 2015 . 115 3564 - 3614 . DOI:10.1021/acs.chemrev.5b00033http://doi.org/10.1021/acs.chemrev.5b00033 .
Zhang X, Fevre M, Jones G O, Waymouth R M. . Chem Rev , 2018 . 118 839 - 885 . DOI:10.1021/acs.chemrev.7b00329http://doi.org/10.1021/acs.chemrev.7b00329 .
Bomgardner M M . Chem Eng News , 2014 . 92 10 - 14.
Bozell J J, Petersen G R . Green Chem , 2010 . 12 539 - 554 . DOI:10.1039/b922014chttp://doi.org/10.1039/b922014c .
Martin D P. Williams S F. . Biochem Eng J , 2015 . 16 97 - 105.
Saiyasombata W, Molloy R, Nicholson T M, Johnson A F, Ward I M, Poshyachindac S . Polymer , 1998 . 39 5581 - 5585 . DOI:10.1016/S0032-3861(97)10370-6http://doi.org/10.1016/S0032-3861(97)10370-6 .
Duda A, Kowalski A. Thermodynamics and kinetics of ringopening polymerization. In: Dubois P, Coulembier O, Raquez J M, eds. Handbook of Ring-Opening Polymerization. Weinheim: Wiley-VCH, 2009. Chapter 1, 1 – 52
Houk K N, Jabbari A, Hall H K, Alemán C . J Org Chem , 2008 . 73 2674 - 2678 . DOI:10.1021/jo702567vhttp://doi.org/10.1021/jo702567v .
Moore T, Adhikari R, Gunatillake P . Biomaterials , 2005 . 26 3771 - 3782 . DOI:10.1016/j.biomaterials.2004.10.002http://doi.org/10.1016/j.biomaterials.2004.10.002 .
Oishi A, Taguchi Y, Fujita K. Japan patent, JP2003252968. 2003-09-10
Oishi A, Taguchi Y, Fujita K, Ikeda Y, Masuda T. Japan patent, JP2000281767. 2000-10-10
Yamashita K, Yamamoto K, Kadokawa J I . Chem Lett , 2014 . 43 213 - 215 . DOI:10.1246/cl.130952http://doi.org/10.1246/cl.130952 .
Hong M, Chen E Y X . Nat Chem , 2016 . 8 42 - 49 . DOI:10.1038/nchem.2391http://doi.org/10.1038/nchem.2391 .
Hong M, Chen E Y X . Green Chem , 2017 . 19 3692 - 3706 . DOI:10.1039/C7GC01496Ahttp://doi.org/10.1039/C7GC01496A .
Kaminsky W, Eger C. . J Anal Appl Pyrol , 2001 . 58 781 - 787.
Hong M, Chen E Y X . Angew Chem Int Ed , 2016 . 55 4188 - 4193 . DOI:10.1002/anie.201601092http://doi.org/10.1002/anie.201601092 .
Hong M, Tang X, Newell B S, Chen E Y X . Macromolecules , 2017 . 50 8469 - 8479 . DOI:10.1021/acs.macromol.7b02174http://doi.org/10.1021/acs.macromol.7b02174 .
Liu S, Ren C, Zhao N, Shen Y, Li Z . Macromol Rapid Commun , 2018 . 39 ( 24 ): 1800485 DOI:10.1002/marc.201800485http://doi.org/10.1002/marc.201800485 .
Zhao N, Ren C, Li H, Li Y, Liu S, Li Z . Angew Chem Int Ed , 2017 . 56 12987 - 12990 . DOI:10.1002/anie.201707122http://doi.org/10.1002/anie.201707122 .
Shen Y, Zhang J, Zhao N, Liu F, Li Z . Polym Chem , 2018 . 9 2936 - 2941 . DOI:10.1039/C8PY00389Khttp://doi.org/10.1039/C8PY00389K .
Zhang C J, Hu L F, Wu H L, Cao X H, Zhang X H . Macromolecules , 2018 . 51 8705 - 8711 . DOI:10.1021/acs.macromol.8b01757http://doi.org/10.1021/acs.macromol.8b01757 .
Lin L, Han D, Qin J, Wang S, Xiao M, Sun L, Meng Y . Macromolecules , 2018 . 51 9317 - 9322 . DOI:10.1021/acs.macromol.8b01860http://doi.org/10.1021/acs.macromol.8b01860 .
Walther P, Frey W, Naumann S . Polym Chem , 2018 . 9 3674 - 3683 . DOI:10.1039/C8PY00784Ehttp://doi.org/10.1039/C8PY00784E .
Hong M, Chen J, Chen E Y X . Chem Rev , 2018 . 118 10551 - 10616 . DOI:10.1021/acs.chemrev.8b00352http://doi.org/10.1021/acs.chemrev.8b00352 .
Tang J, Chen E Y X . J Polym Sci, Part A: Polym Chem , 2018 . 56 2271 - 2279 . DOI:10.1002/pola.v56.20http://doi.org/10.1002/pola.v56.20 .
Hong M, Chen E Y X . Macromolecules , 2014 . 47 3614 - 3624 . DOI:10.1021/ma5007717http://doi.org/10.1021/ma5007717 .
Tang X, Hong M, Falivene L, Caporaso L, Cavallo L, Chen E Y X . J Am Chem Soc , 2016 . 138 14326 - 14337 . DOI:10.1021/jacs.6b07974http://doi.org/10.1021/jacs.6b07974 .
Zhu J B, Watson E M, Tang J, Chen E Y X . Science , 2018 . 360 398 - 403 . DOI:10.1126/science.aar5498http://doi.org/10.1126/science.aar5498 .
Zhu J B, Chen E Y X. Angew Chem Int Ed, 2018, Doi: 10.1002/anie.201813006
Haba O, Itabashi H . Polym J , 2013 . 46 89 - 93.
Zhu J B, Chen E Y X . Angew Chem Int Ed , 2018 . 57 12558 - 12562 . DOI:10.1002/anie.201808003http://doi.org/10.1002/anie.201808003 .
0
浏览量
93
下载量
13
CSCD
关联资源
相关文章
相关作者
相关机构