浏览全部资源
扫码关注微信
1.长春理工大学 化学与环境工程学院
2. 材料科学与工程学院 长春 130222
E-mail: kakuchi@eng.hokudai.ac.jp Toyoji Kakuchi, E-mail: kakuchi@eng.hokudai.ac.jp
E-mail: shenXiande@cust.edu.cn Xian-de Shen, E-mail: shenXiande@cust.edu.cn
纸质出版日期:2019-4,
网络出版日期:2019-1-26,
收稿日期:2018-11-12,
修回日期:2018-12-13,
扫 描 看 全 文
张子路, 徐亮, 臧春雨, Kakuchi Toyoji, 沈贤德.
Zi-lu Zhang, Liang Xu, Chun-yu Zang, Kakuchi Toyoji, Xian-de Shen. Precise Synthesis and Thermoresponsive Property of Block Copolymers Consisting of
张子路, 徐亮, 臧春雨, Kakuchi Toyoji, 沈贤德.
Zi-lu Zhang, Liang Xu, Chun-yu Zang, Kakuchi Toyoji, Xian-de Shen. Precise Synthesis and Thermoresponsive Property of Block Copolymers Consisting of
采用B(C
6
F
5
)
3
催化的基团转移聚合(GTP)法,精确合成了聚(
N
N
-二乙基丙烯酰胺) (PDEAAm)与聚(
N
N
-二甲基丙烯酰胺) (PDMAAm)的均聚物及无规、二嵌段、三嵌段和五嵌段共聚物. 共聚物的聚合度均约为100,分散性指数在1.19 ~ 1.26之间. 利用可控温紫外可见光谱仪(UV-Vis)测定聚合物水溶液的浊点温度(
T
cp
),通过
T
cp
分析与线-球相变有关的温敏性能,利用变温核磁(NMR)及动态光散射粒度仪(DLS)测定聚合物在水溶液中的相变行为. 结果表明,对于无规共聚物,随着DMAAm比例增加,
T
cp
从38.5 °C增加到68.0 °C,当 DMAAm比例
>
75%时,没有观察到相转变现象. 对于二嵌段共聚物,随着DMAAm比例的增加,
T
cp
从34.5 °C增加到44.5 °C,并且当PDEAAm和PDMAAm链段比例为10/90时共聚物没有相转变现象. 对于三嵌段和五嵌段共聚物,只有两端为PDEAAm链段的共聚物表现出相转变现象,三嵌段和五嵌段共聚物的
T
cp
分别为51.5和55.0 °C.
The thermoresponsive property of poly(
N
N
-diethylacrylamide) (PDEAAm) and its copolymer with
N
N
-dimethylacrylamide (DMAAm) has been studied using various types of the copolymers. The group transfer polymerization (GTP) of
N
N
-diethylacrylamide (DEAAm) and
N
N
-dimethylacrylamide (DMAAm) was carried out using tris(pentafluorophenyl borane (B(C
6
F
5
)
3
) as the organocatalyst and triethyl((1-methoxy-2-methylprop-1-en-1-yl)o-xy)silane (SKA
Et
) as the initiator to produce the random
di-
tri-
and penta-block copolymers along with the homopolymers of PDEAAm and PDMAAm. The polymerization degrees (PDs) of homopolymers were 25
50
100
200
300
and 500 for PDEAAm
25
50
and 100 for PDMAAm and those of all copolymers was 100
and their dispersity was in the range of 1.05–1.26. The monomer compositions (
m
/
n
) in the copolymers were 90/10
75/25
70/30
65/35
60/40
55/45
50/50
25/75
and 10/90 for the random copolymer of PDEAAm
m
-
r
-PDMAAm
n
and 90/10
75/25
50/50
25/75
and 10/90 for the di-block copolymer of PDEAAm
m
-
b
-PDMAAm
n
. The monomer compositions in the tri-block copolymer were PDEAAm
25
-
b
-PDMAAm
50
-
b
-PDEAAm
25
and PDMAAm
25
-
b
-PDEAAm
50
-
b
-PDMAAm
25
and those in the penta-block copolymer were PDEAAm
20
-
b
-PDMAAm
25
-
b
-PDEAAm
50
-
b
-PDMAAm
25
-
b
-PDEAAm
20
and PDMAAm
20
-
b
-PDEAAm
20
-
b
-PDMAAm
20
-
b
-PDEAAm
20
-
b
-PDMAAm
20
. The thermoresponsive property concerning with a coil-globule phase transition was estimated using the temperature of cloud point (
T
cp
) of aqueous polymer solutions
i.e.
the lower critical solution temperature (LCST). The
T
cp
of PDEAAm increased with the increasing PD from 36.5 °C to 29.5 °C. For PDEAAm
m
-
r
-PDMAAm
n
the
T
cp
increased with the increasing DMAAm unit from 38.5 °C to 68.0 °C and none of the
T
cp
s was observed for the copolymers with the
m
/
n
ratios of 25/75 and 10/90. For PDEAAm
m
-
b
-PDMAAm
n
the
T
cp
increased with the increasing segment length of PDMAAm from 34.5 °C to 44.5 °C and no phase transition was observed for PDEAAm
10
-
b
-PDMAAm
90
. For the tri- and penta-block copolymers
which consist of the PDMAAm segment at both copolymer ends
PDEAAm
25
-
b
-PDMAAm
50
-
b
-PDEAAm
25
and PDEAAm
20
-
b
-PDMAAm
25
-
b
-PDEAAm
50
-
b
-PDMAAm
25
-
b
-PDEAAm
20
only exhibited the phase transition
such as the
T
cp
s of 51.5 and 55.0 °C
respectively. These phase transition behaviors were confirmed by nuclear magnetic resonance spectroscopy (NMR) and dynamic light scattering (DLS) measurements. The hydrodynamic radius (
Rh
) of PDEAAm
25
-
b
-PDMAAm
50
-
b
-PDEAAm
25
and PDEAAm
20
-
b
-PDMAAm
20
-
b
-PDEAAm
20
-
b
-PDMAAm
20
-
b
-PDEAAm
20
surged from lower temperature of 45 °C to higher temperature of 75 °C.
温敏性嵌段共聚物NN-二乙基丙烯酰胺NN-二甲基丙烯酰胺浊点温度
Termoresponeive propertyBlock acrylamide copolymerPoly(NN-diethylacrylamide)Poly(NN-dimethylacrylamide)Temperature of cloud point
Liu F, Urban M W . Prog Polym Sci , 2010 . 35 ( 1-2 ): 3 - 23 . DOI:10.1016/j.progpolymsci.2009.10.002http://doi.org/10.1016/j.progpolymsci.2009.10.002 .
Gil E, Hudson S . Prog Polym Sci , 2004 . 29 ( 12 ): 1173 - 1222 . DOI:10.1016/j.progpolymsci.2004.08.003http://doi.org/10.1016/j.progpolymsci.2004.08.003 .
Mura S, Nicolas J, Couvreur P . Nat Mater , 2013 . 12 ( 991 ): 991 - 1003 . DOI:10.1039/c6py90169ghttp://doi.org/10.1039/c6py90169g .
Roth P J, Lowe A B . Polym Chem , 2017 . 8 ( 1 ): 10 - 11 . DOI:10.1039/C6PY90169Ghttp://doi.org/10.1039/C6PY90169G .
Scarpa J S, Mueller D D, Klotz I M . J Am Chem Soc , 1967 . 89 ( 24 ): 6024 - 6030 . DOI:10.1021/ja01000a006http://doi.org/10.1021/ja01000a006 .
Crespy D, Rossi R M . Polym Int , 2007 . 56 ( 12 ): 1461 - 1468 . DOI:10.1002/(ISSN)1097-0126http://doi.org/10.1002/(ISSN)1097-0126 .
Liu R, Fraylich M, Saunders B R . Colloid Polym Sci , 2009 . 287 ( 6 ): 627 - 643 . DOI:10.1007/s00396-009-2028-xhttp://doi.org/10.1007/s00396-009-2028-x .
Hocine S, Li M H . Soft Matter , 2013 . 9 ( 25 ): 5839 - 5861 . DOI:10.1039/c3sm50428jhttp://doi.org/10.1039/c3sm50428j .
Saeki S, Kuwahara N, Nakata M, Kaneko M . Polymer , 1976 . 17 ( 8 ): 685 - 689 . DOI:10.1016/0032-3861(76)90208-1http://doi.org/10.1016/0032-3861(76)90208-1 .
Wei H, Cheng S X, Zhang X Z, Zhuo R X . Prog Polym Sci , 2009 . 34 ( 9 ): 893 - 910 . DOI:10.1016/j.progpolymsci.2009.05.002http://doi.org/10.1016/j.progpolymsci.2009.05.002 .
Schild H G . Prog Polym Sci , 1992 . 17 ( 2 ): 163 - 249 . DOI:10.1016/0079-6700(92)90023-Rhttp://doi.org/10.1016/0079-6700(92)90023-R .
Plamper F A, Ruppel M, Schmalz A, Borisov O, Ballauff M, Müller A H E . Macromolecules , 2007 . 40 ( 23 ): 8361 - 8366 . DOI:10.1021/ma071203bhttp://doi.org/10.1021/ma071203b .
Plamper F A, Ballauff M, Müller A H E . J Am Chem Soc , 2007 . 129 ( 47 ): 14538 - 14539 . DOI:10.1021/ja074720ihttp://doi.org/10.1021/ja074720i .
Meeussen F, Nies E, Berghmans H, Verbrugghe S, Goethals E, Du Prez F . Polymer , 2000 . 41 ( 24 ): 8597 - 8602 . DOI:10.1016/S0032-3861(00)00255-Xhttp://doi.org/10.1016/S0032-3861(00)00255-X .
Salzinger S, Seemann U B, Plikhta A, Rieger B . Macromolecules , 2011 . 44 ( 15 ): 5920 - 5927 . DOI:10.1021/ma200752dhttp://doi.org/10.1021/ma200752d .
Vancoillie G, Frank D, Hoogenboom R . Prog Polym Sci , 2014 . 39 ( 6 ): 1074 - 1095 . DOI:10.1016/j.progpolymsci.2014.02.005http://doi.org/10.1016/j.progpolymsci.2014.02.005 .
Xia Y, Yin X, Burke N A D, Stöver H D H . Macromolecules , 2005 . 38 ( 14 ): 5937 - 5943 . DOI:10.1021/ma050261zhttp://doi.org/10.1021/ma050261z .
Zhang Y, Furyk S, Bergbreiter D E, Cremer P S . J Am Chem Soc , 2005 . 127 ( 41 ): 14505 - 14510 . DOI:10.1021/ja0546424http://doi.org/10.1021/ja0546424 .
Kikuchi S, Chen Y, Kitano K, Takada K, Satoh T, Kakuchi T . Polym Chem , 2015 . 6 ( 38 ): 6845 - 6856 . DOI:10.1039/C5PY01104Chttp://doi.org/10.1039/C5PY01104C .
Hasegawa A, Naganawa Y, Fushimi M, Ishihara K, Yamamoto H . Org Lett , 2006 . 8 ( 15 ): 3175 - 3178 . DOI:10.1021/ol060939ahttp://doi.org/10.1021/ol060939a .
Lessard D G, Ousalem M, Zhu X X . Can J Chem , 2001 . 79 ( 12 ): 1870 - 1874 . DOI:10.1139/v01-180http://doi.org/10.1139/v01-180 .
Huber S, Jordan R . Colloid Polym Sci , 2007 . 286 ( 4 ): 395 - 402.
Sakai N, Jin M, Sato S I, Satoh T, Kakuchi T . Polym Chem , 2014 . 5 ( 3 ): 1057 - 1062 . DOI:10.1039/C3PY00972Fhttp://doi.org/10.1039/C3PY00972F .
Tao X, Deng Y, Shen Z, Ling J . Macromolecules , 2014 . 47 ( 18 ): 6173 - 6180 . DOI:10.1021/ma501131thttp://doi.org/10.1021/ma501131t .
0
浏览量
21
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构