浏览全部资源
扫码关注微信
聊城大学材料科学与工程学院 聊城 252059
E-mail: wangliping5@163.com
E-mail: lglzsd@126.com
纸质出版日期:2019-4,
网络出版日期:2018-12-28,
收稿日期:2018-11-13,
修回日期:2018-12-3,
扫 描 看 全 文
刘倩, 闫春娜, 王利平, 李光. 水滴模板法制备PS-
Qian Liu, Chun-na Yan, Li-ping Wang, Guang Li. Fabrication and Properties of Poly(styrene)-block-Poly(hydroxyethyl methacrylate)/Eu Complex Honeycomb Structured Porous Films
刘倩, 闫春娜, 王利平, 李光. 水滴模板法制备PS-
Qian Liu, Chun-na Yan, Li-ping Wang, Guang Li. Fabrication and Properties of Poly(styrene)-block-Poly(hydroxyethyl methacrylate)/Eu Complex Honeycomb Structured Porous Films
采用可逆加成-断裂链转移(RAFT)聚合法合成了一系列两亲性嵌段共聚物聚苯乙烯-
b
-聚甲基丙烯酸羟乙酯/Eu配合物(PS-
b
-PHEMA/Eu配合物),通过凝胶渗透色谱(GPC)、傅里叶变换红外光谱(FTIR)、核磁共振氢谱(
1
H-NMR)和固体荧光光谱对聚合物进行了表征,并采用水滴模板法制备了PS-
b
-PHEMA/Eu配合物蜂窝状多孔膜. 研究了溶剂、聚合物浓度、聚合物分子量对蜂窝状多孔膜表面形貌的影响. 采用场发射扫描电子显微镜(FESEM)、能量色散X-射线能谱仪(EDX)和激光扫描共聚焦显微镜(LSCM)等研究了多孔膜的表面形貌和元素分布. 研究结果表明,溶剂、聚合物浓度、聚合物分子量均会影响多孔膜的表面形貌,沸点较低、挥发性较强且与水不互溶的有机溶剂有利于形成规整度高、孔径大小均一的多孔膜,多孔膜的平均孔径随着溶液浓度的增加和聚合物分子量的增大而逐渐减小. FESEM-EDX分析进一步证实亲水基团(Eu配合物基团)主要分布在孔壁上,这与LSCM结果一致. 多孔膜在空气中放置6个月后,原本大部分集中在孔内壁的Eu元素,出现在了膜表面,这可能是由于连接在聚合物分子链上的亲水基团随分子链的自由旋转发生了迁移.
Amphiphilic copolymers
poly(styrene)-block-poly(hydroxyethyl methacrylate)/Eu complex (PS-
b
-PHEMA/Eu complex) were synthesized
via
reversible addition fragmentation chain transfer (RAFT) polymerization. The structure and composition of the amphiphilic copolymers
PS-
b
-PHEMA/Eu complex
were characterized by gel permeation chromatography (GPC)
Fourier transform infrared spectroscopy (FTIR)
1
H-nuclear magnetic resonance spectroscopy (
1
H-NMR) and solid-state fluorescence spectrum. The honeycomb structured porous films were fabricated by dropping the PS-
b
-PHEMA/Eu complex copolymer solutions onto glass substrates
via
the breath figure method. The effects of solvent
copolymer concentration
and copolymers’ molecular weight on the formation of porous films were investigated. The surface morphology and elemental mapping of the highly ordered porous films were investigated by field emission scanning electron microscopy (FESEM)
energy dispersive X-ray spectroscopy (EDX) and laser scanning confocal microscopy (LSCM). The results indicated that the solvent type
copolymer concentration
and copolymers’ molecular weight can affect the surface morphology of the honeycomb structured porous films. Organic solvents with low boiling point
high volatility
and insolubility in water are conducive to the formation of porous films with high regularity and uniform pore size. The average diameter of the pores in the porous films decreased with the increasing polymer concentration and the molecular weight of the copolymers. The FESEM-EDX analysis further verified that the hydrophilic groups (Eu complex groups) were mainly distributed at the sidewall of the pore
which was consistent with the LSCM results. It is worth mentioning that after the porous films were placed in the air for half a year
most of the Eu elements originally concentrated in the inner wall of the pore migrated to the surface of the films. This might be due to the migration of hydrophilic groups attached on the polymer chains with free rotation of the chains.
蜂窝状多孔膜水滴模板法聚苯乙烯-b-聚甲基丙烯酸羟乙酯/Eu配合物荧光标记
Honeycomb structured porous filmsBreath figure methodPS-b-PHEMA/Eu complexFluorescence labeling
Zhou Y C, Huang J J, Sun W, Ju Y L, Yang P H, Ding L Y, Chen Z R, Kornfield J A . ACS Appl Mater Interfaces , 2017 . 9 4177 - 4183 . DOI:10.1021/acsami.6b13525http://doi.org/10.1021/acsami.6b13525 .
Alexandra M B, Marta F G, Juan R H . Prog Polym Sci , 2014 . 39 510 - 554 . DOI:10.1016/j.progpolymsci.2013.08.006http://doi.org/10.1016/j.progpolymsci.2013.08.006 .
Bera S, Pal M, Sarkar S, Jana S . ACS Appl Mater Interfaces , 2017 . 9 4420 - 4424 . DOI:10.1021/acsami.6b13143http://doi.org/10.1021/acsami.6b13143 .
Mao Y Y, Mei Z P, Wen J Y, Li G, Tian Y H, Zhou B P, Tian Y Q . Sens Actuators B , 2018 . 257 944 - 953 . DOI:10.1016/j.snb.2017.11.042http://doi.org/10.1016/j.snb.2017.11.042 .
Pessoni L, Lacombe S, Billon L, Brown R, Save M . Langmuir , 2013 . 29 10264 - 10271 . DOI:10.1021/la402079zhttp://doi.org/10.1021/la402079z .
Pizarro G C, Marambio O G, Manuel J O, Oyarzún D P, Geckelercd K E . Mater Des , 2016 . 111 513 - 521 . DOI:10.1016/j.matdes.2016.09.036http://doi.org/10.1016/j.matdes.2016.09.036 .
Liu Y L, Xu J Z, Zhou Y, Ye Z Y, Tan W S . Mater Sci Eng C , 2017 . 78 579 - 588 . DOI:10.1016/j.msec.2017.04.140http://doi.org/10.1016/j.msec.2017.04.140 .
He Y, Chen Y, Xu Q, Xu J, Weng J . ACS Appl Mater Interfaces , 2017 . 9 7826 - 7833 . DOI:10.1021/acsami.6b15016http://doi.org/10.1021/acsami.6b15016 .
Yao B, Zhu Q, Yao L, Hao J . Appl Surf Sci , 2015 . 332 287 - 294 . DOI:10.1016/j.apsusc.2015.01.170http://doi.org/10.1016/j.apsusc.2015.01.170 .
Su Y, Dang J, Zhang H, Zhang Y, Tian W . Langmuir , 2017 . 33 7393 - 7402 . DOI:10.1021/acs.langmuir.7b01502http://doi.org/10.1021/acs.langmuir.7b01502 .
Chiu Y C, Kuo C C, Lin C J, Chen W C . Soft Matter , 2011 . 7 9350 - 9358 . DOI:10.1039/c1sm05712jhttp://doi.org/10.1039/c1sm05712j .
Zhang L, Chen L, Liu S, Gong J, Tang Q, Su Z . Dalton Trans , 2018 . 47 105 - 111 . DOI:10.1039/C7DT03201Chttp://doi.org/10.1039/C7DT03201C .
Aitkek J . Nature , 1911 . 86 516 - 517 . DOI:10.1038/086516a0http://doi.org/10.1038/086516a0 .
Widawski G, Rawiso M, François, B . Nature , 1994 . 369 387 - 389 . DOI:10.1038/369387a0http://doi.org/10.1038/369387a0 .
Srinivasarao M, Collings D, Philips A, Patel S . Science , 2001 . 292 79 - 83 . DOI:10.1126/science.1057887http://doi.org/10.1126/science.1057887 .
Schatz M F, Neitzel G P . Annu Rev Fluid Mech , 2001 . 33 93 - 127 . DOI:10.1146/annurev.fluid.33.1.93http://doi.org/10.1146/annurev.fluid.33.1.93 .
Calejo M T, Ilmarinen T, Skottman H, Kellomäki M . Acta Biomater , 2018 . 66 44 - 66 . DOI:10.1016/j.actbio.2017.11.043http://doi.org/10.1016/j.actbio.2017.11.043 .
Han K Y, Heng L P, Jiang L . ACS Nano , 2016 . 10 11087 - 11095 . DOI:10.1021/acsnano.6b05961http://doi.org/10.1021/acsnano.6b05961 .
Yuan H, Yu B, Cong H L . J Colloid Interface Sci , 2016 . 461 232 - 238 . DOI:10.1016/j.jcis.2015.09.019http://doi.org/10.1016/j.jcis.2015.09.019 .
Vijaya L, Rajan R, Raju A, Rajan T P D, Pavithran C . J Phys Chem C , 2017 . 121 15154 - 15159 . DOI:10.1021/acs.jpcc.7b02941http://doi.org/10.1021/acs.jpcc.7b02941 .
Ding L, Zhang A J, Li W Q, Bai H, Li L . J Colloid Interface Sci , 2016 . 461 179 - 184 . DOI:10.1016/j.jcis.2015.09.031http://doi.org/10.1016/j.jcis.2015.09.031 .
Hong Q, Ma X Y, Li Z G, Chen F, Zhang Q L . Mater Des , 2016 . 96 1 - 9 . DOI:10.1016/j.matdes.2016.01.137http://doi.org/10.1016/j.matdes.2016.01.137 .
Wang L P, Yin K Y, Li Guang, Liu Q, Deng A X, Ma H Y . React Funct Polym , 2016 . 99 59 - 64 . DOI:10.1016/j.reactfunctpolym.2015.12.008http://doi.org/10.1016/j.reactfunctpolym.2015.12.008 .
Wu B H, Zhu L W, Ou Y, Tang W, Wan L S, Xu Z K . J Phys Chem C , 2015 . 119 1971 - 1979 . DOI:10.1021/jp5119212http://doi.org/10.1021/jp5119212 .
Wong K H, Maribel H G, Granville A M, Davis T P, Christopher B K . J Porous Mat , 2016 . 13 213 - 223.
Fu W X, Luo C H, Morin E A, He W, Li Z B, Zhao B . ACS Macro Lett , 2017 . 6 127 - 133 . DOI:10.1021/acsmacrolett.6b00888http://doi.org/10.1021/acsmacrolett.6b00888 .
Hoff E A, Abel B A, Tretbar C A, McCormick C L, Patton D L . Macromolecules , 2016 . 49 554 - 563 . DOI:10.1021/acs.macromol.5b02377http://doi.org/10.1021/acs.macromol.5b02377 .
Wan L S, Ke B B, Zhang J, Xu Z K . J Phys Chem B , 2012 . 116 40 - 47 . DOI:10.1021/jp208115uhttp://doi.org/10.1021/jp208115u .
Wang L P, Li Y C, Chen L F, Ban C L, Li G, Ni J J . J Colloid Interface Sci , 2014 . 420 112 - 118 . DOI:10.1016/j.jcis.2014.01.004http://doi.org/10.1016/j.jcis.2014.01.004 .
Wang Y, Lorandi F, Fantin M, Chmielarz P, Isse A A, Gennaro A, Matyjaszewski K . Macromolecules , 2017 . 50 8417 - 8425 . DOI:10.1021/acs.macromol.7b01730http://doi.org/10.1021/acs.macromol.7b01730 .
Shen L L, Lu Q Z, Zhu A Q, Lv X Q, An Z Z . ACS Macro Lett , 2017 . 6 625 - 631 . DOI:10.1021/acsmacrolett.7b00343http://doi.org/10.1021/acsmacrolett.7b00343 .
Liu Q, Yan C N, Li YC, Li M F, Bai L P, Wang L P, Li G . RSC Adv , 2018 . 8 19524 - 19531 . DOI:10.1039/C8RA02980Fhttp://doi.org/10.1039/C8RA02980F .
Gao B J, Shi N, Qiao Z W . Spectrochim Acta Part A , 2015 . 150 565 - 574 . DOI:10.1016/j.saa.2015.05.078http://doi.org/10.1016/j.saa.2015.05.078 .
Zeng G J, Liu M Y, Heng C N, Huang Q, Mao L C, Huang H Y, Hui J F, Deng F J, Zhang X Y, Wei Y . Appl Surf Sci , 2017 . 399 499 - 505 . DOI:10.1016/j.apsusc.2016.12.107http://doi.org/10.1016/j.apsusc.2016.12.107 .
Xu X Y, Yan B . J Mater Chem C , 2016 . 4 1543 - 1549 . DOI:10.1039/C5TC04002Ghttp://doi.org/10.1039/C5TC04002G .
Bormashenko E, Musin A, Bormashenko Y, Whyman G, Pogreb R, Gendelman O . Macromol Chem Phys , 2007 . 208 702 - 709 . DOI:10.1002/(ISSN)1521-3935http://doi.org/10.1002/(ISSN)1521-3935 .
Wu B H, Zhong Q Z, Xu Z K, Wan L S . Polym Chem , 2017 . 8 4290 - 4295 . DOI:10.1039/C7PY00803Ahttp://doi.org/10.1039/C7PY00803A .
Li X Y, Zhao Q L, Xu T T, Huang J, Wei L H, Ma Z . Eur Polym J , 2014 . 50 135 - 141 . DOI:10.1016/j.eurpolymj.2013.10.017http://doi.org/10.1016/j.eurpolymj.2013.10.017 .
Liu Ruilai(刘瑞来), Han Jing(韩静), Chen Xiujuan(陈秀娟), Lei Shenghong(雷声宏), Liu Haiqing(刘海清) . Acta Polymerica Sinica(高分子学报) , 2012 . ( 3 ): 291 - 298.
Wang Yin(王胤), Mao Yindao(冒银道), Wang Deyan(王德艳), Hu Xiaoya(胡效亚) . Prog Chem(化学进展) , 2008 . 20 105 - 116.
Li Z G, Ma X Y, Kong Q, Zang D Y, Guan X H, Ren X H . J Phys Chem C , 2016 . 120 18659 - 18664 . DOI:10.1021/acs.jpcc.6b06186http://doi.org/10.1021/acs.jpcc.6b06186 .
Chen P C, Wan L S, Ke B B, Xu Z K . Langmuir , 2011 . 27 12597 - 12605 . DOI:10.1021/la201911fhttp://doi.org/10.1021/la201911f .
Ke B B, Wan L S, Chen P C, Zhang L Y, Xu Z K . Langmuir , 2010 . 26 15982 - 15988 . DOI:10.1021/la1030608http://doi.org/10.1021/la1030608 .
Arora J S, Ponnusamy T, Zheng R, Venkataraman P, Raghavan S R, Blakec D, John V T . Soft Matter , 2015 . 11 5188 - 5191 . DOI:10.1039/C5SM01068Chttp://doi.org/10.1039/C5SM01068C .
Li Z, Kong Q, Ma X, Zang D, Guan X, Ren X . Nanoscale , 2017 . 9 8249 - 8255 . DOI:10.1039/C7NR02906Chttp://doi.org/10.1039/C7NR02906C .
0
浏览量
14
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构