浏览全部资源
扫码关注微信
1.四川大学 空天科学与工程学院
2. 高分子科学与工程学院
3. 高分子材料工程国家重点实验室 成都 610065
E-mail: miqiukong@scu.edu.cn
E-mail: guangxianli@scu.edu.cn
纸质出版日期:2019-7,
网络出版日期:2019-3-12,
收稿日期:2018-11-23,
修回日期:2019-2-12,
扫 描 看 全 文
徐文卿, 吕亚栋, 孔米秋, 黄亚江, 李光宪. 原位聚合水性聚氨酯/聚多巴胺粒子复合材料的制备及性能研究[J]. 高分子学报, 2019,50(7):710-720.
Wen-qing Xu, Ya-dong Lv, Mi-qiu Kong, Ya-jiang Huang, Guang-xian Li. Study on Properties of Waterborne Polyurethane/Polydopamine Nanoparticles Prepared by
徐文卿, 吕亚栋, 孔米秋, 黄亚江, 李光宪. 原位聚合水性聚氨酯/聚多巴胺粒子复合材料的制备及性能研究[J]. 高分子学报, 2019,50(7):710-720. DOI: 10.11777/j.issn1000-3304.2018.18250.
Wen-qing Xu, Ya-dong Lv, Mi-qiu Kong, Ya-jiang Huang, Guang-xian Li. Study on Properties of Waterborne Polyurethane/Polydopamine Nanoparticles Prepared by
通过原位聚合法制备了水性聚氨酯(WPU)/聚多巴胺粒子(PDA)复合材料,并进一步研究了PDA粒子的引入对WPU的热性能、力学性能及抗紫外老化性能的影响. 首先通过多巴胺盐酸盐在氢氧化钠碱液中自发氧化聚合得到了平均粒径约为150 nm的PDA粒子. 随后以异佛尔酮二异氰酸酯、聚四氢呋喃二醇、2
2-二羟甲基丙酸为主要原料反应得到亲水性聚氨酯预聚体,然后加入PDA粒子的水分散液对预聚体进行乳化,最后以1
4-丁二醇扩链得到WPU/PDA复合材料. 结果表明,PDA粒子的加入显著提高了WPU的热稳定性和力学性能. 与纯WPU相比,当PDA粒子含量为0.5 wt%时,WPU/PDA复合材料的起始降解温度提高了22.7 °C,拉伸强度和杨氏模量分别提高了37%和78%. 同时,PDA粒子的加入也极大阻碍了紫外辐照老化后WPU表面裂纹的形成,有效抑制了材料的氧化降解. 这主要是因为PDA粒子与WPU硬段的氨基甲酸酯基和脲基之间较强的相互作用以及PDA粒子本身的紫外吸收和自由基捕获能力.
Waterborne polyurethane (WPU)/polydopamine (PDA) nanoparticle composites were successfully fabricated
via in situ
polymerization and effects of PDA nanoparticles on thermal properties
mechanical properties and anti-ultraviolet aging properties of WPU were investigated. Firstly
PDA nanoparticles with an average size of 150 nm were synthesized through spontaneous oxidation polymerization of dopamine hydrochloride in sodium hydroxide (NaOH) solution at 50 °C for 5 h under stirring. And it was retained in aqueous dispersion. Then
isophoeone diisocyanate (IPDI)
polytetrahydrofuran diol (PTMG-1000)
2
2-dimethylol propionic acid (DMPA) were reacted to prepare the hydrophilic poliurethane prepolymer at 80 °C for 2 h under stirring
and then PDA nanoparticles in aqueous dispersion were added into the prepolymer to emulsify simultaneously for 30 min. Finally
1
4-butanediol (BDO) was used as a small molecule chain extender to prepare WPU/PDA composites. It was found that both the thermostability and mechanical properties of WPU is enchanced by the addition of PDA nanoparticles. Especially when the concentration of PDA nanoparticles is 0.5 wt%
the initial degradation temperature of WPU/PDA composites is enhanced by 22.7 °C
and the tensile strength and Young’s modulus is increased by 37% and 78%
respectively
compared with pure WPU. Meanwhile
with the addition of PDA nanoparticles
the formation of cracks on the surface of WPU after ultraviolet irradiation is obviously hindered
and the decline of thermostability caused by ultraviolet irradiation is effectively suppressed. This can be mainly attributed to the impediment of the bond breakage during the ultraviolet irradiation due to the interaction of PDA nanoparticles with the urethane bonds and urea bonds of the hard segment of WPU.
聚多巴胺水性聚氨酯力学性能热稳定性抗紫外性能
PolydopamineWaterborne PolyurethaneMechanical propertiesAnti-ultraviolet capabilityThermostability
Zhang S W, Zhang D D, Zhen L, Yang Y F, Meng S, Kong Z W, Yang W, Bai H Y, Dong W F . JCT Res , 2018 . 15 ( 6 ): 1333 - 1341.
Zhen Z, Luo S, Kai Y, Wu X J, Ren T B. . RSC Adv , 2017 . 7 ( 67 ): 42296 - 42304 . DOI:10.1039/C7RA08464Ahttp://doi.org/10.1039/C7RA08464A .
Kim B K, Seo J W, Han M J . Eur Polym J , 2003 . 39 ( 1 ): 85 - 91 . DOI:10.1016/S0014-3057(02)00173-8http://doi.org/10.1016/S0014-3057(02)00173-8 .
Rageh M M, Elgebaly R H. . Mutat Res Genet Toxicol Environ Mutagen , 2018 . 828 15 - 22 . DOI:10.1016/j.mrgentox.2018.01.009http://doi.org/10.1016/j.mrgentox.2018.01.009 .
Xiao M, Hu Z Y, Wang Z, Li Y W, Tormo A D, Le Thomas N, Wang B X, Gianneschi N C, Shawkey M D, Dhinojwala A. . Sci Adv , 2017 . 3 ( 9 ): e1701151 DOI:10.1126/sciadv.1701151http://doi.org/10.1126/sciadv.1701151 .
Wang Y, Li T, Wang X F, Ma P M, Bai H Y, Dong W F, Xie Y, Chen M Q. . Biomacromolecules , 2016 . 17 ( 11 ): 3782 - 3789 . DOI:10.1021/acs.biomac.6b01298http://doi.org/10.1021/acs.biomac.6b01298 .
Shanmuganathan K, Cho J H, Iyer P, Baranowitz S, Ellison C J. . Macromolecules , 2016 . 44 ( 24 ): 9499 - 9507.
Ju K Y, Lee Y, Lee S, Park S B, Lee J K. . Biomacromolecules , 2011 . 12 ( 3 ): 625 - 632 . DOI:10.1021/bm101281bhttp://doi.org/10.1021/bm101281b .
Phua S L, Yang L, Toh C L, Huang S, Tsakadze Z, Lau S K, Mai Y W, Lu X. . ACS Appl Mater Interfaces , 2012 . 4 ( 9 ): 4571 - 4578 . DOI:10.1021/am300947bhttp://doi.org/10.1021/am300947b .
Pei A, Malho J M, Ruokolainen J, Zhou Q, Berglund L A. . Macromolecules , 2011 . 44 ( 11 ): 4422 - 4427 . DOI:10.1021/ma200318khttp://doi.org/10.1021/ma200318k .
Yao X L, Qi X D, He Y L, Tan D S, Chen F, Fu Q. . ACS Appl Mater Interfaces , 2014 . 6 ( 4 ): 2497 - 2507 . DOI:10.1021/am4056694http://doi.org/10.1021/am4056694 .
Saralegi A, Fernandes S C M, Alonsovarona A, Palomares T, Foster E J, Weder C, Eceiza A, Corcuera M A. . Biomacromolecules , 2013 . 14 ( 12 ): 4475 - 4482 . DOI:10.1021/bm401385chttp://doi.org/10.1021/bm401385c .
Mahmood K, Zia K M, Aftab W, Zuber M, Tabasum S, Noreen A, Zia F. . Int J Biol Macromol , 2018 . 113 150 - 158 . DOI:10.1016/j.ijbiomac.2018.01.031http://doi.org/10.1016/j.ijbiomac.2018.01.031 .
Xi Z Y, Xu Y Y, Zhu L P, Wang Y, Zhu B K. . J Memb Sci , 2009 . 327 ( 1 ): 244 - 253.
Liu Y L, Ai K L, Lu L H. . Chem Rev , 2014 . 114 ( 9 ): 5057 - 5115 . DOI:10.1021/cr400407ahttp://doi.org/10.1021/cr400407a .
Sheng W B, Li W, Zhang G X, Tong Y B, Liu Z Y, Jia X. . New J Chem , 2015 . 39 ( 4 ): 2752 - 2757 . DOI:10.1039/C4NJ01744Ghttp://doi.org/10.1039/C4NJ01744G .
Wang Y, Wang Z, Ma P M, Bai H Y, Dong W F, Xie Y, Chen M Q. . RSC Adv , 2015 . 5 ( 89 ): 72691 - 72698 . DOI:10.1039/C5RA12333Jhttp://doi.org/10.1039/C5RA12333J .
Bandyopadhyay P, Nguyen T T, Li X, Kim N H, Lee J H. . Compos Part B-Eng , 2017 . 117 101 - 110 . DOI:10.1016/j.compositesb.2017.02.035http://doi.org/10.1016/j.compositesb.2017.02.035 .
Yu R L, Raghu A V, Han M J, Kim B K. . Macromol Chem Phys , 2010 . 210 ( 15 ): 1247 - 1254.
Cao X, Dong H, Li C M. . Biomacromolecules , 2007 . 8 ( 3 ): 899 - 904 . DOI:10.1021/bm0610368http://doi.org/10.1021/bm0610368 .
Wu S L, Shi T J, Zhang L Y. . High Perform Polym , 2015 . 28 ( 4 ): 61 - 62.
Han Y T, Cheng Z, Dong W, Zhang F, Xin Z Y. . J Thermoplast Compos , 2015 . 30 ( 1 ): 107 - 120.
Zhang Y H, Xia Z B, Huang H, Chen H Q. . J Anal Appl Pyrolys , 2009 . 84 ( 1 ): 89 - 94 . DOI:10.1016/j.jaap.2008.11.008http://doi.org/10.1016/j.jaap.2008.11.008 .
Meredith P, Sarna T. . Pigm Cell Melanoma R , 2010 . 19 ( 6 ): 572 - 594.
Stępień K, Dzierżęga-Lęcznar A, Kurkiewicz S, Tam I. . J Am Soc Mass Spectrom , 2009 . 20 ( 3 ): 464 - 468 . DOI:10.1016/j.jasms.2008.11.003http://doi.org/10.1016/j.jasms.2008.11.003 .
Perrin F X, Irigoyen M, Aragon E, Vernet J L. . Polym Degrad Stab , 2000 . 70 ( 3 ): 469 - 475 . DOI:10.1016/S0141-3910(00)00143-9http://doi.org/10.1016/S0141-3910(00)00143-9 .
Wilhelm C, Gardette J L. . Polymer , 1997 . 38 ( 16 ): 4019 - 4031 . DOI:10.1016/S0032-3861(96)00984-6http://doi.org/10.1016/S0032-3861(96)00984-6 .
Zhang B, Sun Z, Bai Y T, Zhuang H Q, Ge D T, Shi W, Sun Y N. . RSC Adv , 2016 . 6 ( 82 ): 78378 - 78384 . DOI:10.1039/C6RA12307Dhttp://doi.org/10.1039/C6RA12307D .
Dong W F, Wang Y, Huang C Q, Xiang S F, Ma P M, Ni Z B, Chen M Q. . J Therm Anal Calorim , 2014 . 115 ( 2 ): 1661 - 1668 . DOI:10.1007/s10973-013-3419-2http://doi.org/10.1007/s10973-013-3419-2 .
0
浏览量
33
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构