浏览全部资源
扫码关注微信
1.中国科学院上海应用物理研究所 中国科学院界面物理与技术重点实验室 上海 201800
2.中国科学院大学 北京 100049
3.上海嘉定区中心医院口腔科 上海 201800
4.上海科技大学物质科学与技术学院 上海 201210
E-mail: wanglihua@sinap.ac.cn Li-hua Wang, E-mail: wanglihua@sinap.ac.cn
纸质出版日期:2019-4,
网络出版日期:2019-1-25,
收稿日期:2018-11-23,
修回日期:2018-12-28,
扫 描 看 全 文
代江兵, 张丽霞, 毛秀海, 赵彦, 李柯, 谷沛霖, 郭琳洁, 李江, 钟超, 樊春海, 王丽华. 蛋白-DNA协同组装构建亚微米级复合结构[J]. 高分子学报, 2019,50(4):359-365.
Jiang-bing Dai, Li-xia Zhang, Xiu-hai Mao, Yan Zhao, Ke Li, Pei-lin Gu, Lin-jie Guo, Jiang Li, Chao Zhong, Chun-hai Fan, Li-hua Wang. Submicrometre Superstructure Co-assembled from Protein and DNA[J]. Acta Polymerica Sinica, 2019,50(4):359-365.
代江兵, 张丽霞, 毛秀海, 赵彦, 李柯, 谷沛霖, 郭琳洁, 李江, 钟超, 樊春海, 王丽华. 蛋白-DNA协同组装构建亚微米级复合结构[J]. 高分子学报, 2019,50(4):359-365. DOI: 10.11777/j.issn1000-3304.2018.18251.
Jiang-bing Dai, Li-xia Zhang, Xiu-hai Mao, Yan Zhao, Ke Li, Pei-lin Gu, Lin-jie Guo, Jiang Li, Chao Zhong, Chun-hai Fan, Li-hua Wang. Submicrometre Superstructure Co-assembled from Protein and DNA[J]. Acta Polymerica Sinica, 2019,50(4):359-365. DOI: 10.11777/j.issn1000-3304.2018.18251.
以大肠杆菌菌毛蛋白CsgA组装形成的蛋白纤维为模板,引导不同数目的DNA四面体(tetrahedron DNA nanostructure,TDN)组装构建了蛋白-DNA亚微米复合结构. TDN经次氮基三乙酸(NTA)修饰后在Ni
2+
的螯合作用下与CsgA蛋白单体结合,利用CsgA的自组装能力将TDN有序地排列在形成的蛋白纤维上. 原子力显微镜(atomic force microscopy,AFM)成像结果表明,控制TDN与CsgA的浓度比为1:500,可以得到单个TDN与蛋白纤维的组装产物. 将2个TDN通过杂交形成二聚体(dTDN)与CsgA蛋白进行组装,得到的亚微米复合结构保持了很好的直链形态,在蛋白纤维上连有3个dTDN结构的比例达44%.
Functional supramolecular complexes co-assembled with multiple proteins and nucleic acids are ubiquitous in nature
such as ribosome and viruses. It is fundamentally important to understand and utilize these heterogeneous structures. Here
we reported a protein-DNA submicrometre superstructure fabricated from the self-assembly of protein CsgA and DNA nanostructures. By inspecting the physiological conditions of protein-DNA co-assembly
we found that the originally soluble CsgA could polymerize into insoluble fibers in a particular buffer (30 mmol/L Tris-HCl
450 mmol/L NaCl
pH = 7.2)
and such fibers benefited the storage of tetrahedron DNA nanostructure (TDN). Concentration and fibrillation time were optimized for the aggregation-free conversion of CsgA into amyloid fibers. Specifically
the optimum conversion of monomeric CsgA into micrometer-scale fibers could be realized at a concentration of 5 μmol/L. Meanwhile
atomic force microscopy (AFM) suggested that CsgA assembled into mature fibers in 5 days and formed larger aggregates after 7 days. The height of mature fibers and aggregates was about 3.9 and 6.1 nm
respectively. Afterwards
TDN was modified with NTA molecule and conjugated to CsgA through the chelation of Ni
2+
His-tag
and NTA. A submicrometre complex CsgA fiber-dTDN was further generated by hybridizing two copies of TDN in dimeric structure (dTDN) through
β
-sheet interactions and Watson-Crick hybridization. This approach could fabricate a series of dTDN structures precisely without inducing the random aggregation of molecules. The yield of up to 44% was higher than that obtained from the direct connection of DNA modules
via
DNA technology. In summary
our findings demonstrated that CsgA fibers could act as a sort of novel scaffold for the assembly of protein-templated DNA nanostructure. Particularly
this model provides a deep insight into the generation of functional superstructures through self-assembly of protein and DNA-based building blocks.
协同组装DNA纳米技术CsgA蛋白蛋白-DNA复合结构
Co-AssemblyDNA nanotechnologyCsgA proteinProtein-DNA complex
Graham J, Butler P J G . Eur J Biochem , 2010 . 93 ( 2 ): 333 - 337.
Stubbs G, Warren S, Holmes K . Nature , 1977 . 267 216 - 221 . DOI:10.1038/267216a0http://doi.org/10.1038/267216a0 .
Link A J, Eng J, Schieltz D M, Carmack E, Mize G J, Morris D R, Garvik B M . Nat Biotechnol , 1999 . 17 ( 7 ): 676 - 682 . DOI:10.1038/10890http://doi.org/10.1038/10890 .
Wang K C, Chang H Y . Mol Cell , 2011 . 43 ( 6 ): 904 - 914 . DOI:10.1016/j.molcel.2011.08.018http://doi.org/10.1016/j.molcel.2011.08.018 .
Lim Y B, Lee E, Yoon Y R, Lee M S, Lee M . Angew Chem Int Ed , 2010 . 47 ( 24 ): 4525 - 4528.
Milles S, Jensen M R, Communie G, Maurin D, Schoehn G, Ruigrok R W H, Blackledge M . Angew Chem Int Ed , 2016 . 55 ( 32 ): 9356 - 9360 . DOI:10.1002/anie.201602619http://doi.org/10.1002/anie.201602619 .
Kye M, Lim Y B . Angew Chem Int Ed , 2016 . 128 ( 39 ): 12182 - 12186 . DOI:10.1002/ange.201605696http://doi.org/10.1002/ange.201605696 .
Praetorius F, Dietz H . Science , 2017 . 355 ( 6331 ): 1283 .
Kye M, Lim Y B . Angew Chem Int Ed , 2016 . 55 ( 39 ): 12003 - 12007 . DOI:10.1002/anie.201605696http://doi.org/10.1002/anie.201605696 .
Lin M H, Wang J B, Zhou G B, Wang J J, Wu N, Lu J X, Gao J M, Chen X Q, Shi J Y, Zuo X L, Fan C H . Angew Chem Int Ed , 2015 . 54 ( 7 ): 2151 - 2155.
Shi Jiezhong(史杰中), Jia Haoyang(贾昊旸), Liu Dongsheng(刘冬生) . Acta Polymerica Sinica(高分子学报) , 2017 . ( 1 ): 135 - 142.
Hou C, Guan S, Wang R, Zhang W, Meng F, Zhao L, Xu J . J Phys Chem Lett , 2017 . 8 ( 17 ): 3970 - 3979 . DOI:10.1021/acs.jpclett.7b01564http://doi.org/10.1021/acs.jpclett.7b01564 .
Xu Y, Ye J, Liu H, Cheng E, Yang Y, Wang W, Zhao M . Chem Commun , 2008 . 1 ( 1 ): 49 - 51.
Yan H, Park S H, Finkelstein G, Reif J H, Labean T H . Science , 2003 . 301 ( 5641 ): 1882 - 1884 . DOI:10.1126/science.1089389http://doi.org/10.1126/science.1089389 .
Zhang C, Tian C, Guo F, Liu Z, Jiang W, Mao C . Angew Chem Int Ed , 2012 . 51 ( 14 ): 3382 - 3385 . DOI:10.1002/anie.v51.14http://doi.org/10.1002/anie.v51.14 .
Luo Q, Hou C, Bai Y, Wang R, Liu J . Chem Rev , 2016 . 116 ( 22 ): 13571 - 13632 . DOI:10.1021/acs.chemrev.6b00228http://doi.org/10.1021/acs.chemrev.6b00228 .
Sinclair J C, Davies K M, Vénien-Bryan C, Noble M E . Nat Nanotechnol , 2011 . 6 ( 9 ): 558 - 562 . DOI:10.1038/nnano.2011.122http://doi.org/10.1038/nnano.2011.122 .
Božič S, Doles T, Gradišar H, Jerala R . Curr Opin in Chem Biol , 2013 . 17 ( 6 ): 940 - 945 . DOI:10.1016/j.cbpa.2013.10.014http://doi.org/10.1016/j.cbpa.2013.10.014 .
Kobayashi N, Yanase K, Sato T, Unzai S, Hecht M H, Arai R . J Am Chem Soc , 2015 . 137 ( 35 ): 11285 - 11293 . DOI:10.1021/jacs.5b03593http://doi.org/10.1021/jacs.5b03593 .
Knowles T P, Mezzenga R . Adv Mater , 2016 . 28 ( 31 ): 6546 - 6561 . DOI:10.1002/adma.201505961http://doi.org/10.1002/adma.201505961 .
Dueholm M S, Nielsen S B, Hein K L, Nissen P, Chapman M, Christiansen G, Nielsen P H, Otzen D E . Biochemistry , 2011 . 50 ( 39 ): 8281 - 8290 . DOI:10.1021/bi200967chttp://doi.org/10.1021/bi200967c .
Barnhart M M, Chapman M R . Annu Rev Microbiol , 2006 . 60 ( 60 ): 131 - 147.
Wang X, Smith D R, Jones J W, Chapman M R . J Biol Chem , 2007 . 282 ( 6 ): 3713 - 3719.
Xing Shu(邢淑), Jiang Dawei(江大卫), Cui Chengjun(崔呈俊), Wang Lihua(王丽华), Huang Qing(黄庆) . Scientia Sinica Chimica(中国科学:化学) , 2015 . ( 11 ): 1220 - 1225.
Wen Y L, Pei H, Shen Y, Xi J J, Lin M H, Lu N, Shen X Z, Li J, Fan C H . Sci Rep , 2013 . 3 ( 3 ): 867 .
Zhao Yan(赵彦), Li Fan(李凡), Guo Linjie(郭琳洁), Dai JiangBing(代江兵), Xing Shu(邢淑), Wang Lihua(王丽华) . Nucl Sci Tech(核技术) , 2017 . 40 ( 5 ): 50501 .
Fang Weina(方维娜), Fan Chunhai(樊春海), Liu Huajie(柳华杰) . Acta Polymerica Sinica(高分子学报) , 2017 . ( 12 ): 1993 - 2000.
Xing S, Jiang D, Li F, Li J, Li Q, Huang Q, Wang L . ACS Appl Mater Interfaces , 2015 . 7 ( 24 ): 13174 - 13179 . DOI:10.1021/am505592ehttp://doi.org/10.1021/am505592e .
Jungmann R, Avendano M S, Woehrstein J B, Dai M, Shih W M, Yin P . Nat Methods , 2014 . 11 ( 3 ): 313 - 318 . DOI:10.1038/nmeth.2835http://doi.org/10.1038/nmeth.2835 .
Tikhomirov G, Petersen P, Qian L . Nature , 2017 . 552 ( 7683 ): 67 - 71 . DOI:10.1038/nature24655http://doi.org/10.1038/nature24655 .
0
浏览量
25
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构