浏览全部资源
扫码关注微信
中山大学 聚合物复合材料及功能材料教育部重点实验室 高性能树脂基复合材料广东省重点实验室 广东省高性能有机聚合物光电功能薄膜工程技术研究中心 化学学院 广州 510275
E-mail: ceszy@mail.sysu.edu.cn Yi Zhang, E-mail: ceszy@mail.sysu.edu.cn
E-mail: xjr@mail.sysu.edu.cn Jia-rui Xu, E-mail: xjr@mail.sysu.edu.cn
纸质出版日期:2019-4,
网络出版日期:2019-2-25,
收稿日期:2018-11-23,
修回日期:2018-1-2,
扫 描 看 全 文
魏世洋, 郑智博, 余桥溪, 范振国, 刘四委, 池振国, 张艺, 许家瑞. 具有rGO三维导热网络结构聚酰亚胺复合薄膜的制备及性能[J]. 高分子学报, 2019,50(4):402-409.
Shi-yang Wei, Zhi-bo Zheng, Qiao-xi Yu, Zhen-guo Fan, Si-wei Liu, Zhen-guo Chi, Yi Zhang, Jia-rui Xu. Enhanced Thermal Conductivity of PI Films by Strengthening Three-dimensional rGO Network Template[J]. Acta Polymerica Sinica, 2019,50(4):402-409.
魏世洋, 郑智博, 余桥溪, 范振国, 刘四委, 池振国, 张艺, 许家瑞. 具有rGO三维导热网络结构聚酰亚胺复合薄膜的制备及性能[J]. 高分子学报, 2019,50(4):402-409. DOI: 10.11777/j.issn1000-3304.2018.18253.
Shi-yang Wei, Zhi-bo Zheng, Qiao-xi Yu, Zhen-guo Fan, Si-wei Liu, Zhen-guo Chi, Yi Zhang, Jia-rui Xu. Enhanced Thermal Conductivity of PI Films by Strengthening Three-dimensional rGO Network Template[J]. Acta Polymerica Sinica, 2019,50(4):402-409. DOI: 10.11777/j.issn1000-3304.2018.18253.
为了使还原氧化石墨烯(rGO)的面内导热方向与复合物材料散热方向一致,提高rGO在复合材料中的导热效率,更大程度地释放rGO的导热潜力,采用冷冻干燥的方法处理rGO的聚酰胺酸(PAA)分散液,得到PAA黏结的rGO三维网络结构,热酰亚胺化之后得到聚酰亚胺(PI)加固的rGO三维网络结构模板(3DrGO-PI). 使用10 wt%的PAA胶液浇铸上述3DrGO-PI模板,制备得到含有rGO三维导热网络结构的3DrGO/PI复合薄膜. 结果表明,所得到的复合薄膜具有良好的导热性能,当rGO的含量为8 wt%时,3DrGO/PI复合薄膜导热系数达到1.57 W·m
−1
·K
−1
,为纯PI导热系数的8.72倍. 同时复合薄膜具有较好的热稳定性,随着rGO含量的增加,薄膜的
T
g
上升,热膨胀系数(CTE)下降,热性能更稳定.
In this work
high thermal conductive polyimide (PI) composites with reduced graphene oxide (rGO) as filler were prepared. In order to improve the thermal conductivity of rGO in the PI composites
rGO should form heat conductive paths in PI matrix
and the in-plane direction of rGO should be consistent with the heat dissipation direction of composite materials. Therefore
three-dimensional rGO networks (3DrGO) were prepared by freeze-drying technology to construct an effective thermal conductive path in PI matrix. In order to stabilize 3DrGO networks during the preparation process of PI composites
the 3DrGO networks were adhered and reinforced by PI. The process includes: (1) the rGO dispersion containing 3 wt% polyamide acid (PAA) was freeze-dried to prepare the PAA-reinforced 3DrGO network (3DrGO-PAA); (2) the 3DrGO-PAA was treated by thermal imidization to obtain the PI-reinforced 3DrGO network (3DrGO-PI); (3) 10 wt% PAA was cast onto the 3DrGO-PI template and imidized at 100
200
and 350 °C for 1 h
respectively
at each temperature to obtain the 3DrGO-PI/PI composite films. The 3DrGO-PI/PI composite film exhibits the thermal conductivity of 1.57 W·m
−1
·K
−1
with 8 wt% rGO (772% enhancement compared to that of neat PI film). Whereas the PI composite films with random distributed rGO (rGO/PI composite film) or unreinforced 3DrGO (3DrGO-water/PI composite film) only exhibit the thermal conductivity of 0.51 W·m
−1
·K
−1
(183% enhancement compared to that of neat PI film) or 1.02 W·m
−1
·K
−1
(467% enhancement compared to that of neat PI film)
respectively. All the composite films maintain very good thermal stabilities. The
T
d5%
(thermal decomposition temperature at 5 wt% weight loss) values of the composite films are higher than that at 540 °C. Compared with that of neat PI
the
T
g
s of the composite films are slightly enhanced and relatively higher (higher than 390 °C). The coefficient of thermal expansion (CTE) of the composite films can be greatly decreased by the addition of 3DrGO. The CTE of 3DrGO-PI/PI composite film is as low as 2.16 × 10
–5
/°C when loading 8 wt% 3DrGO.
聚酰亚胺高导热还原氧化石墨烯三维结构浇铸法
PolyimideHigh thermal conductivityReduced graphene oxide3D structureCasting
Ge J J, Li C Y, Xue G, Mann I K, Zhang D, Wang S Y, Harris F W, Cheng S Z D, Hong S C, Zhuang X W, Shen Y R . J Am Chem Soc , 2001 . 123 5768 - 5776 . DOI:10.1021/ja0042682http://doi.org/10.1021/ja0042682 .
Lim H, Cho W J, Ha C S, Ando S, Kim Y K, Park C H, Lee K . Adv Mater , 2002 . 14 1275 - 1279 . DOI:10.1002/1521-4095(20020916)14:18<1275::AID-ADMA1275>3.0.CO;2-Yhttp://doi.org/10.1002/1521-4095(20020916)14:18<1275::AID-ADMA1275>3.0.CO;2-Y .
Yang Tingting(杨婷婷), Zhou Zhuxin(周竹欣), Zhang Yi(张艺), Liu Siwei(刘四委), Chi Zhenguo(池振国), Xu Jiarui(许家瑞) . 高分子学报 , Acta Polymerica Sinica , 2017 . ( 3 ): 411 - 428.
Zu Mengyi(祖梦祎), Ke Ying(柯颖), Qi Shengli(齐胜利), Yang Huichuan(杨汇川), Tian Guofeng(田国峰), Wu Dezhen(武德珍) . 高分子学报 , Acta Polymerica Sinica , 2018 . ( 5 ): 617 - 623.
Prasher R . Phys Rev B , 2008 . 77 075424 DOI:10.1103/PhysRevB.77.075424http://doi.org/10.1103/PhysRevB.77.075424 .
Derue L, Dautel O, Tournebize A, Drees M, Pan H, Berthumeyrie S, Pavageau B, Cloutet E, Chambon S, Hirsch L, Rivaton A, Hudhomme P, Facchetti A, Wantz G . Adv Mater , 2014 . 26 5831 - 5838 . DOI:10.1002/adma.v26.33http://doi.org/10.1002/adma.v26.33 .
Moore A L, Shi L . Mater Today , 2014 . 17 163 - 174 . DOI:10.1016/j.mattod.2014.04.003http://doi.org/10.1016/j.mattod.2014.04.003 .
Yan W, Zhang Y, Sun H W, Liu S W, Chi Z G, Chen X C, Xu J R . J Mater Chem A , 2014 . 2 20958 - 20965 . DOI:10.1039/C4TA04663Chttp://doi.org/10.1039/C4TA04663C .
Xu L B, Chen G F, Wang W, Li L, Fang X Z . Composites Part A , 2016 . 84 472 - 481 . DOI:10.1016/j.compositesa.2016.02.027http://doi.org/10.1016/j.compositesa.2016.02.027 .
Ren P G, Hou S Y, Ren F, Zhang Z P, Sun Z F, Xu L . Composites Part A , 2016 . 90 13 - 21 . DOI:10.1016/j.compositesa.2016.06.019http://doi.org/10.1016/j.compositesa.2016.06.019 .
Han W F, Bai Y F, Liu S C, Ge C H, Wang L X, Ma Z Y, Yang Y X, Zhang X D . Composites Part A , 2017 . 102 218 - 227 . DOI:10.1016/j.compositesa.2017.08.012http://doi.org/10.1016/j.compositesa.2017.08.012 .
Kim K, Yoo M, Ahn K, Kim J . Ceram Int , 2015 . 41 179 - 187 . DOI:10.1016/j.ceramint.2014.08.056http://doi.org/10.1016/j.ceramint.2014.08.056 .
Kim K, Kim J . Composites Part B , 2016 . 93 67 - 74 . DOI:10.1016/j.compositesb.2016.02.052http://doi.org/10.1016/j.compositesb.2016.02.052 .
Yin L Y, Zhou X G, Yu J S, Wang H L, Ran C C . Composites Part A , 2016 . 90 626 - 632 . DOI:10.1016/j.compositesa.2016.08.022http://doi.org/10.1016/j.compositesa.2016.08.022 .
Ramdani N, Derradji M, Feng T T, Tong Z, Wang J, Mokhnache E O, Liu W B . Mater Lett , 2015 . 155 34 - 37 . DOI:10.1016/j.matlet.2015.04.097http://doi.org/10.1016/j.matlet.2015.04.097 .
Xu R J, Chen M Y, Zhang F, Huang X R, Luo X G, Lei C H, Lu S G, Zhang X Q . Compos Sci Technol , 2016 . 133 111 - 118 . DOI:10.1016/j.compscitech.2016.07.031http://doi.org/10.1016/j.compscitech.2016.07.031 .
Sun R H, Yao H, Zhang H B, Li Y, Mai Y W, Yu Z Z . Compos Sci Technol , 2016 . 137 16 - 23 . DOI:10.1016/j.compscitech.2016.10.017http://doi.org/10.1016/j.compscitech.2016.10.017 .
Xia J W, Zhang G P, Deng L B, Yang H P, Sun R, Wong C P . RSC Adv , 2015 . 5 19315 - 19320 . DOI:10.1039/C5RA00718Fhttp://doi.org/10.1039/C5RA00718F .
Shahil K M F, Balandin A A . Nano Lett , 2012 . 12 861 - 867 . DOI:10.1021/nl203906rhttp://doi.org/10.1021/nl203906r .
Pop E, Varshney V, Roy A K . MRS Bull , 2012 . 37 1273 DOI:10.1557/mrs.2012.203http://doi.org/10.1557/mrs.2012.203 .
Xie Dan(谢丹), Teng Chao(滕超), Jiang Lei(江雷) . 高分子学报 , Acta Polymerica Sinica , 2018 . ( 11 ): 1460 - 1466 . DOI:10.11777/j.issn1000-3304.2018.18087http://doi.org/10.11777/j.issn1000-3304.2018.18087 .
Lian G, Tuan C C, Li L Y, Jiao S L, Wang Q L, Moon K S, Cui D L, Wong C P . Chem Mater , 2016 . 28 6096 - 6104 . DOI:10.1021/acs.chemmater.6b01595http://doi.org/10.1021/acs.chemmater.6b01595 .
Hummers J W S, Offeman R E . J Am Chem Soc , 1958 . 80 1339 DOI:10.1021/ja01539a017http://doi.org/10.1021/ja01539a017 .
Wang J Y, Yang S Y, Huang Y L, Tien H W, Chin W K, Ma C C M . J Mater Chem , 2011 . 21 13569 - 13575 . DOI:10.1039/c1jm11766ahttp://doi.org/10.1039/c1jm11766a .
Zhang Libin(张立斌), Wang Jinqing(王金清), Yang Shengrong(杨生荣), Kong Xiangzheng(孔祥正). Acta Polymerica Sinica(高分子学报), 2014, (11): 1472-1478
Dong X C, Chen J, Ma Y W, Wang J, Chan-Park M B, Liu X M, Wang L H, Huang W, Chen P . Chem Commun , 2012 . 48 10660 DOI:10.1039/c2cc35844ahttp://doi.org/10.1039/c2cc35844a .
McAllister M J, Li J L, Adamson D H . Chem Mater , 2007 . 18 4396 - 4404.
Li D, Mueller M B, Gilje S . Nat Nanotechnol , 2008 . 2 101 - 105.
Erickson K, Erni R, Lee Z . Adv Mater , 2010 . 40 4467 - 4472.
Gilje S, Han S, Wang M . Nano Lett , 2007 . 11 3394 - 3398.
Tung V C, Allen M J, Yang Y . Nat Nanotechnol , 2009 . 1 25 - 29.
Wei S Y, Yu Q X, Fan Z G, Liu S W, Chi Z G, Chen X D, Zhang Y, Xu J R . RSC Adv , 2018 . 8 22169 - 22176 . DOI:10.1039/C8RA00827Bhttp://doi.org/10.1039/C8RA00827B .
0
浏览量
31
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构