浏览全部资源
扫码关注微信
1.济南大学化学化工学院 济南 250022
2.山东省产品质量检验研究院 济南 250102
E-mail: chm_liss@ujn.edu.cn Shu-sheng Li, E-mail: chm_liss@ujn.edu.cn
纸质出版日期:2019-7,
网络出版日期:2019-1-21,
收稿日期:2018-12-18,
修回日期:2018-12-21,
扫 描 看 全 文
齐鑫, 吴莉莉, 李树生, 孔祥正. 沉淀聚合制备含有机硅聚脲多孔材料[J]. 高分子学报, 2019,50(7):730-739.
Xin Qi, Li-li Wu, Shu-sheng Li, Xiang-zheng Kong. Synthesis of Porous and Siloxane-containing Polyurea through Precipitation Polymerization[J]. Acta Polymerica Sinica, 2019,50(7):730-739.
齐鑫, 吴莉莉, 李树生, 孔祥正. 沉淀聚合制备含有机硅聚脲多孔材料[J]. 高分子学报, 2019,50(7):730-739. DOI: 10.11777/j.issn1000-3304.2018.18271.
Xin Qi, Li-li Wu, Shu-sheng Li, Xiang-zheng Kong. Synthesis of Porous and Siloxane-containing Polyurea through Precipitation Polymerization[J]. Acta Polymerica Sinica, 2019,50(7):730-739. DOI: 10.11777/j.issn1000-3304.2018.18271.
通过甲苯二异氰酸酯(TDI)与
α
ω
-氨丙基二硅氧烷(APDS)在水-丙酮混合溶剂中沉淀聚合制备了含有机硅聚脲多孔材料(PUS). 研究了两单体质量比和混合溶剂中水/丙酮质量比及反应温度对PUS产率及形貌的影响. 使用扫描电镜和红外光谱及核磁共振对PUS的形貌及化学结构进行了表征. 结果表明,在反应温度30 °C和水/丙酮质量比为3/7条件下,改变APDS/TDI的质量比,可控制PUS的形貌. 当APDS/TDI配比小于3/7时可制得为无规则形状的多孔结构PUS;而APDS/TDI高于3/7时可制得PUS多孔微球;APDS/TDI配比为4/6时多孔微球粒径分布最为均一,其比表面为106 m
2
/g. 此外,微球粒径随着水/丙酮配比及反应温度的升高而逐渐减小. 对PUS热性能表征结果表明其具有良好的耐热性.
Poly(urea-siloxane) (PUS) was prepared through the precipitation polymerization between
α
ω
-aminopropyl disiloxane (APDS) and toluene diisocyanate (TDI) in H
2
O-acetone mixed solvent
which involved no extra addition of surfactants
initiators
or any other additives. Effects of monomer ratio (APDS/TDI
W
/
W
)
binary solvent composition ratio (H
2
O/acetone
W
/
W
)
and reaction temperature on the polymerization process and PUS morphology were investigated. Results indicated that tuning the APDS/TDI ratio could readily change the PUS morphology from a porous irregular form into porous microspheres. Specifically
the former appeared at APDS/TDI weight ratio no more than 2/8
while the latter occurred when increasing the APDS/TDI ratio up to 3/7 or higher; APDS/TDI ratio at 4/6 could affard porous PUS microspheres with 1 µm in diameter and narrow polydispersity. On the other hand
H
2
O/acetone weight ratio and polymerization temperature also affected the size and size distribution of PUS microspheres remarkably
and the the narrowest size distribution of 1.04 was realized at APDS/TDI ratio of 4/6
H
2
O/acetone ratio of 3/7
and polymerization temperature equal to 30 °C. With APDS/TDI ratio varied from 0/10 to 4/6
the pore volume of PUS increased from about 1.79 cm
3
/g to 2.36 cm
3
/g
whereas the specific surface area decreased from about 163.00 m
2
/g to 106.18 m
2
/g. On the basis of polymerization process
the changes in PUS morphology and porous properties versus APDS/TDI ratio variation could be well interpreted through the mechanisms of polymer precipitation and pore formation. PUS chemical structure was revealed by FTIR and NMR
while thermal property characterization indicated an enhanced thermal stability with the incorporation of APDS units into polyurea system.
沉淀聚合聚脲有机硅聚合物微球多孔结构
Precipitation polymerizationPolyureaSiloxanePolymer microspheresPorous structure
Yilgor I, Yilgor E . Polym Rev , 2007 . 47 487 - 510 . DOI:10.1080/15583720701638260http://doi.org/10.1080/15583720701638260 .
Yilgör E, Yilgör I . Prog Polym Sci , 2014 . 39 1165 - 1195 . DOI:10.1016/j.progpolymsci.2013.11.003http://doi.org/10.1016/j.progpolymsci.2013.11.003 .
Xu S, Xie L, Yu X, Tang H . J Polym Sci, Part A: Polym Chem , 2015 . 53 1794 - 1805 . DOI:10.1002/pola.27627http://doi.org/10.1002/pola.27627 .
Pang B, Zhang J Z, Pang M, Zhao P, Yang Z, Feng S, Zhang J . Polym Chem , 2018 . 9 869 - 877 . DOI:10.1039/C7PY01525Ahttp://doi.org/10.1039/C7PY01525A .
Johnson J C, Wanasekara N D, Korley L T J . J Mater Chem B , 2014 . 2 2554 - 2561 . DOI:10.1039/c3tb21476ahttp://doi.org/10.1039/c3tb21476a .
Quan Y W, Wang Q J, Fang J L, Chen Q M . J Appl Polym Sci , 2010 . 87 584 - 588.
Jiang X, Yu Y, Li X, Kong X Z . Chem Eng J , 2017 . 328 1043 - 1050 . DOI:10.1016/j.cej.2017.07.069http://doi.org/10.1016/j.cej.2017.07.069 .
Mestach D . Prog Colloid Polym Sci , 2004 . 124 37 - 41.
Pardeshi S, Singh S K . RSC Adv , 2016 . 47 23525 - 23536.
Li Shusheng(李树生), Jiang Xubao(姜绪宝), Kong Xiangzheng(孔祥正) . 高等学校化学学报 , Chem J Chinese U , 2013 . 34 992 - 999.
Li S, Kong X Z, Jiang X, Zhu X . Chinese Chem Lett , 2013 . 24 287 - 290 . DOI:10.1016/j.cclet.2013.02.012http://doi.org/10.1016/j.cclet.2013.02.012 .
Li Shiyan(李世彦), Zhu Xiaoli(朱晓丽), Kong Xiangzheng(孔祥正), Jiang Xubao(姜绪宝) . 高分子学报 , Acta Polymerica Sinica , 2016 . ( 3 ): 391 - 398 . DOI:10.11777/j.issn1000-3304.2016.15301http://doi.org/10.11777/j.issn1000-3304.2016.15301 .
Jiang X, Li X, Zhu X, Kong X Z . Ind Eng Chem Res , 2016 . 55 11528 - 11535 . DOI:10.1021/acs.iecr.6b03526http://doi.org/10.1021/acs.iecr.6b03526 .
Han H, Zhou Y, Li S, Wang Y, Kong X Z . ACS Appl Mater Interfaces , 2016 . 8 25714 - 25724 . DOI:10.1021/acsami.6b07979http://doi.org/10.1021/acsami.6b07979 .
Zhang X, Li S, Zhu X, Jiang X, Kong X Z . React Funct Polym , 2018 . 133 143 - 152 . DOI:10.1016/j.reactfunctpolym.2018.10.010http://doi.org/10.1016/j.reactfunctpolym.2018.10.010 .
Wei S Q, Bai Y P, Shao L . Eur Polym J , 2008 . 44 2728 - 2736 . DOI:10.1016/j.eurpolymj.2008.04.025http://doi.org/10.1016/j.eurpolymj.2008.04.025 .
Li S, Han H, Zhu X, Jiang X, Kong X Z . Chinese J Polym Sci , 2015 . 33 1196 - 1210 . DOI:10.1007/s10118-015-1670-7http://doi.org/10.1007/s10118-015-1670-7 .
Jiang X, Kong X Z, Zhu X . J Polym Sci, Part A: Polym Chem , 2011 . 49 4492 - 4497 . DOI:10.1002/pola.v49.20http://doi.org/10.1002/pola.v49.20 .
Mattia J, Painter P . Macromolecules , 2007 . 40 1546 - 1554 . DOI:10.1021/ma0626362http://doi.org/10.1021/ma0626362 .
Chuang F S, Tsi H Y, Chow J D, Tsen W C, Shu Y C, Jang S C . Polym Degrad Stab , 2008 . 93 1753 - 1761 . DOI:10.1016/j.polymdegradstab.2008.07.029http://doi.org/10.1016/j.polymdegradstab.2008.07.029 .
Han H, Li S, Zhu X, Jiang X, Kong X Z . RSC Adv , 2014 . 4 33520 - 33529 . DOI:10.1039/C4RA06383Jhttp://doi.org/10.1039/C4RA06383J .
0
浏览量
23
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构