浏览全部资源
扫码关注微信
1.国家同步辐射实验室 中国科学技术大学 合肥 230029
2.清华大学合肥公共安全研究院 合肥 230088
E-mail: dlwang@ustc.edu.cn Dao-liang Wang, E-mail: dlwang@ustc.edu.cn
纸质出版日期:2019-7,
网络出版日期:2019-2-26,
收稿日期:2018-12-20,
修回日期:2019-1-22,
扫 描 看 全 文
黄伟恒, 魏升慧, 黄宁东, 李良彬, 王道亮. 碱金属反离子对C3对称低聚酰胺超分子多级自组装的影响[J]. 高分子学报, 2019,50(7):702-709.
Wei-heng Huang, Sheng-hui Wei, Ning-dong Huang, Liang-bin Li, Dao-liang Wang. Effect of Alkali Metal Counterion on Hierarchical Self-assembly of C3-Symmetric Oligoamide Supramolecules[J]. Acta Polymerica Sinica, 2019,50(7):702-709.
黄伟恒, 魏升慧, 黄宁东, 李良彬, 王道亮. 碱金属反离子对C3对称低聚酰胺超分子多级自组装的影响[J]. 高分子学报, 2019,50(7):702-709. DOI: 10.11777/j.issn1000-3304.2018.18273.
Wei-heng Huang, Sheng-hui Wei, Ning-dong Huang, Liang-bin Li, Dao-liang Wang. Effect of Alkali Metal Counterion on Hierarchical Self-assembly of C3-Symmetric Oligoamide Supramolecules[J]. Acta Polymerica Sinica, 2019,50(7):702-709. DOI: 10.11777/j.issn1000-3304.2018.18273.
选用具有不同碱金属反离子(Na
+
、K
+
、Cs
+
)的C
3
对称低聚酰胺超分子为研究体系,结合同步辐射X射线小角散射和透射电子显微镜技术,研究碱金属反离子对C
3
对称低聚酰胺超分子多级自组装的影响. 研究表明具有不同碱金属反离子的C
3
对称低聚酰胺超分子都能在水溶液中自组装成管状结构,这些管状结构在反离子为Na
+
的溶液中会进一步有序排列成中心正交相,在反离子为K
+
和Cs
+
的溶液中排列成六方相. 碱金属反离子通过其与C
3
对称低聚酰胺分子末端羧酸根基团吸附程度的不同来改变管状自组装结构的表面带电量,从而调节甚至改变超分子多级自组装结构,为进一步深入理解离子效应并利用离子效应调控自组装有序结构提供了思路.
The effect of alkali metal counterion (Na
+
K
+
Cs
+
) on hierarchical self-assembly of C
3
-symmetric oligoamide supramolecules was studied by Synchrotron radiation X-ray small angle scattering and transmission electron microscope. The C
3
-symmetric molecules with three-armed aromatic oligoamide and different alkali metal counterions are denoted as P
7
(COONa)
3
P
7
(COOK)
3
and P
7
(COOCs)
3
. The experimental results show that the C
3
-symmetric molecules can self-assemble into tubular structures
which will further aggregate in aqueous solution to form a centered rectangular phase in P
7
(COONa)
3
or a hexagonal phase in P
7
(COOK)
3
and P
7
(COOCs)
3
. The centered rectangular phase formed by P
7
(COONa)
3
has a higher degree of order and the adjacent tubular structures become closer compared with the hexagonal phase formed by P
7
(COOK)
3
and P
7
(COOCs)
3
. Though the hexagonal phase formed by P
7
(COOCs)
3
gives a higher degree of order than that formed by P
7
(COOK)
3
they have the similar symmetry and comparable distances between adjacent tubular structures. Therefore
by changing the counterion from Na
+
to K
+
or Cs
+
a phase transition from a centered rectangular phase to hexagonal phase can be achieved. In addition
the electron-density maps show that the fine structure of tubular aggregates will change slightly when the counterion changes from K
+
to Cs
+
which manifests the increase of the diameter of water channel in the tubular structures. The phase transition mentioned above may result from the different surface charge of tubular structures
as the adsorption capacity of counterions for the terminal carboxylate group in the C
3
-symmetric oligoamide will decline when the conterion changes from Na
+
to Cs
+
due to the increasing ionic radius. This kind of hierarchical self-assembly of ordered superstructure constructed by C
3
-symmetric oligoamide not only has the advantages of easy modification and structural stability
but also can be manipulated by simply changing the counterion
and thus has great application potential in drug delivery
tissue repair
etc
.
离子效应碱金属反离子C3对称低聚酰胺超分子自组装X射线小角散射
Ionic effectAlkali metal counterionC3-symmetric oligoamideSupramolecular self-assemblyX-ray small angle scattering
Chen S J . Annu Rev Biophys , 2008 . 37 ( 1 ): 197 - 214 . DOI:10.1146/annurev.biophys.37.032807.125957http://doi.org/10.1146/annurev.biophys.37.032807.125957 .
Draper D E . Biophys J , 2008 . 95 ( 12 ): 5489 - 5495 . DOI:10.1529/biophysj.108.131813http://doi.org/10.1529/biophysj.108.131813 .
Tan Z J, Chen S J . Method Enzymol , 2009 . 469 465 - 487 . DOI:10.1016/S0076-6879(09)69022-4http://doi.org/10.1016/S0076-6879(09)69022-4 .
Page M J, Di Cera E . Physiol Rev , 2006 . 86 ( 4 ): 1049 - 1092 . DOI:10.1152/physrev.00008.2006http://doi.org/10.1152/physrev.00008.2006 .
Kachmar J F, Boyer P D . J Biol Chem , 1953 . 200 ( 2 ): 669 - 682.
Huang N D, Tao J J, Wei S H, Chen M M, Wei C S, Li L B . J Chem Phys , 2015 . 143 ( 11 ): 114901 DOI:10.1063/1.4930854http://doi.org/10.1063/1.4930854 .
O’Shaughnessy B, Yang Q . Phys Rev Lett , 2005 . 94 ( 4 ): 048302 DOI:10.1103/PhysRevLett.94.048302http://doi.org/10.1103/PhysRevLett.94.048302 .
Manning G S . J Chem Phys , 1969 . 51 ( 3 ): 924 - 933 . DOI:10.1063/1.1672157http://doi.org/10.1063/1.1672157 .
Luo Shuangjiang(罗双江), Gao Peiyuan(高培源), Guo Hongxia(郭洪霞), Yang Jingfa(杨京法), Zhao Jiang(赵江) . 高分子学报 , Acta Polymerica Sinica , 2017 . ( 9 ): 1479 - 1487 . DOI:10.11777/j.issn1000-3304.2017.17065http://doi.org/10.11777/j.issn1000-3304.2017.17065 .
Collins K D . Methods , 2004 . 34 ( 3 ): 300 - 311 . DOI:10.1016/j.ymeth.2004.03.021http://doi.org/10.1016/j.ymeth.2004.03.021 .
Collins K D . Biophys J , 1997 . 72 ( 1 ): 65 - 76 . DOI:10.1016/S0006-3495(97)78647-8http://doi.org/10.1016/S0006-3495(97)78647-8 .
Pavlovic M, Huber R, Adok-Sipiczki M, Nardin C, Szilagyi I . Soft Matter , 2016 . 12 ( 17 ): 4024 - 4033 . DOI:10.1039/C5SM03023Dhttp://doi.org/10.1039/C5SM03023D .
Oncsik T, Desert A, Trefalt G, Borkovec M, Szilagyi I . Phys Chem Chem Phys , 2016 . 18 ( 10 ): 7511 - 7520 . DOI:10.1039/C5CP07238Ghttp://doi.org/10.1039/C5CP07238G .
Angelini T E, Liang H, Wriggers W, Wong G C . Proc Natl Acad Sci U S A , 2003 . 100 ( 15 ): 8634 - 8637 . DOI:10.1073/pnas.1533355100http://doi.org/10.1073/pnas.1533355100 .
Ha B Y, Liu A J . Phys Rev Lett , 1997 . 79 ( 7 ): 1289 - 1292 . DOI:10.1103/PhysRevLett.79.1289http://doi.org/10.1103/PhysRevLett.79.1289 .
Li J J, Huang N D, Wang D L, Xu L, Huang Y J, Chen M M, Tao J J, Pan G Q, Wu Z Y, Li L B . Soft Matter , 2013 . 9 ( 18 ): 4642 - 4647 . DOI:10.1039/c3sm50390ahttp://doi.org/10.1039/c3sm50390a .
Tian F, Li X H, Wang Y Z, Yang C M, Zhou P, Lin J Y, Zeng J R, Hong C X, Hua W Q, Li X Y, Miao X R, Bian F G, Wang J . Nucl Sci Technol , 2015 . 26 ( 3 ): 030101 .
Wang D L, Huang Y J, Li J J, Xu L, Chen M M, Tao J J, Li L B . Chem Eur J , 2013 . 19 ( 2 ): 685 - 690 . DOI:10.1002/chem.201202944http://doi.org/10.1002/chem.201202944 .
Wu X B, Wang D L, Chen M M, Wei C S, Wei S H, Huang N D, Li L B, Zhang G B . Chem Eur J , 2015 . 21 ( 43 ): 15388 - 15394 . DOI:10.1002/chem.201501422http://doi.org/10.1002/chem.201501422 .
Wei S H, Chen M M, Wei C S, Huang N D, Li L B . Soft Matter , 2016 . 12 ( 29 ): 6285 - 6292 . DOI:10.1039/C6SM00902Fhttp://doi.org/10.1039/C6SM00902F .
Huang N D, Tao J J, Liu J, Wei S H, Li L B, Wu Z Y . Soft Matter , 2014 . 10 ( 24 ): 4236 - 4240 . DOI:10.1039/c3sm52925hhttp://doi.org/10.1039/c3sm52925h .
Heyda J, Dzubiella J . Soft Matter , 2012 . 8 ( 36 ): 9338 - 9344 . DOI:10.1039/c2sm25599ehttp://doi.org/10.1039/c2sm25599e .
Hitt A L, Cross A R, Williams R C . J Biol Chem , 1990 . 265 ( 3 ): 1639 - 1647.
Vroege G J, Lekkerkerker H N W . Rep Prog Phys , 1992 . 55 ( 8 ): 1241 - 1309 . DOI:10.1088/0034-4885/55/8/003http://doi.org/10.1088/0034-4885/55/8/003 .
Stroobants A, Lekkerkerker H N W, Odijk T . Macromolecules , 1986 . 19 ( 8 ): 2232 - 2238 . DOI:10.1021/ma00162a020http://doi.org/10.1021/ma00162a020 .
Kornyshev A A, Leikin S . J Chem Phys , 1997 . 107 ( 9 ): 3656 - 3674 . DOI:10.1063/1.475320http://doi.org/10.1063/1.475320 .
Kornyshev A A, Lee D J, Leikin S, Wynveen A . Rev Mod Phys , 2007 . 79 ( 3 ): 943 - 996 . DOI:10.1103/RevModPhys.79.943http://doi.org/10.1103/RevModPhys.79.943 .
Xu Jiangfei(徐江飞), Zhang Xi(张希) . 高分子学报 , Acta Polymerica Sinica , 2017 . ( 1 ): 37 - 49 . DOI:10.11777/j.issn1000-3304.2017.16262http://doi.org/10.11777/j.issn1000-3304.2017.16262 .
0
浏览量
12
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构