浏览全部资源
扫码关注微信
南京大学化学化工学院 南京 210023
[ "武伟,男,1977年11月生. 南京大学化学化工学院教授,博士生导师. 1998年和2001年于青岛化工学院获得学士、硕士学位. 2004年于中国科学院化学研究所获得理学博士学位,之后先后在法国国家科研中心(CNRS)生物分子研究所和香港科技大学化学系从事博士后研究,2007年9月进入南京大学化学化工学院. 2014年获得国家自然科学基金优秀青年科学基金资助;2015年入选南京大学登峰人才支持计划(B层次). 目前主要从事高分子药物递送系统和生物光学探针的研究" ]
纸质出版日期:2019-3,
网络出版日期:2018-10-30,
收稿日期:2018-8-30,
修回日期:2018-9-10,
扫 描 看 全 文
张丹, 武伟, 蒋锡群. 单分子聚合物纳米材料的可控合成及生物应用[J]. 高分子学报, 2019,50(3):199-208.
Dan Zhang, Wei Wu, Xi-qun Jiang. Controllable Synthesis and Biological Properties of Unimolecular Polymer Nanomaterials[J]. Acta Polymerica Sinica, 2019,50(3):199-208.
张丹, 武伟, 蒋锡群. 单分子聚合物纳米材料的可控合成及生物应用[J]. 高分子学报, 2019,50(3):199-208. DOI: 10.11777/j.issn1000-3304.2019.18191.
Dan Zhang, Wei Wu, Xi-qun Jiang. Controllable Synthesis and Biological Properties of Unimolecular Polymer Nanomaterials[J]. Acta Polymerica Sinica, 2019,50(3):199-208. DOI: 10.11777/j.issn1000-3304.2019.18191.
现代有机化学和高分子化学的发展为我们提供了多种高效可控的合成手段,例如点击化学、原子转移自由基聚合、可逆加成-断裂链转移聚合、开环易位聚合等. 综合利用这些合成手段,不同拓扑结构的单分子聚合物纳米材料可以被高效可控地合成. 本文主要介绍我们课题组近几年利用可控合成策略制备的几种不同类型的单分子聚合物纳米材料(包括环糊精聚轮烷、树枝状聚合物、多臂聚合物和聚合物分子刷)以及利用这些高分子纳米材料的高度可控性,对其结构与生物性能之间构效关系的探索.
With the rapid development of modern organic chemistry and polymer chemistry
a variety of highly efficient and controllable synthetic methods have been discovered and applied extensively
such as click chemistry
atom transfer radical polymerization
reversible addition-fragmentation chain transfer polymerization
and ring-opening metathesis polymerization. Their comprehensive application has realized the controlled preparation of unimolecular polymer nanomaterials with well-designed topological structures
including cyclodextrane polyrotaxanes
dendrimers
multiarm star-shaped polymers
wormlike polymer brushes
etc
. Functioning as probes and drug carriers for disease diagnoses and treatments
respectively
these specifically fabricated materials are featured with such advantages as high designability
controllability
and stability of chemical structures
favorable reproducibility of pharmacokinetic and pharmacological profiles
great abundancy in reactive groups for multiple functionalization
and desirable ability to covalent-combine drugs for responsive targeted drug release. The highly controllable chemical structures of these unimolecular polymer nanomaterials make them the most suitable objects for studying the relationship between chemical and morphological structures and biological performance. Herein
the recent progress of our group is introduced
with specific focuses on the preparation of unimolecular polymer nanomaterials through controllable synthetic strategies
the precise control of their chemical structures and sizes
and the effect of their chemical structures and sizes on their
in vitro
and
in vivo
biological performance. The objectives of our research include cyclodextrane polyrotaxanes
dendrimers
multiarm star-shaped polymers
and wormlike polymer brushes
and their sizes range from several nanometers to dozens of nanometers. Based on our experiments
some important conclusions have been drawn as follows. Within the dimensional range between ten nanometers and dozens of nanometers
the size reduction of such nanomaterials favors higher cellular uptake
shorter blood circulation
as well as higher tumor accumulation and penetration. Besides
the nanomaterials with zwitterionic poly(carboxybetaine) (PCB) surface exhibit higher cellular uptake
longer blood circulation
and higher tumor accumulation and penetration than those with the poly(ethylene glycol) (PEG) surface do thanks to the surface-tethered phenylboronic acid groups. These results can be much conducive to the design of polymer nanocarriers for tumor diagnosis and therapy.
单分子聚合物纳米材料可控合成药物载体肿瘤治疗
Unimolecular polymer nanomaterialsControllable synthesisDrug carriersTumor treatment
Gerlowski L E, Jain R K . Microvasc Res , 1986 . 31 ( 3 ): 288 - 305 . DOI:10.1016/0026-2862(86)90018-Xhttp://doi.org/10.1016/0026-2862(86)90018-X .
Matsumura Y, Maeda H . Cancer Res , 1986 . 46 ( 12 ): 6387 - 6392.
Shi J J, Kantoff P W, Wooster R, Farokhzad O . Nat Rev Cancer , 2017 . 17 ( 1 ): 20 - 37 . DOI:10.1038/nrc.2016.108http://doi.org/10.1038/nrc.2016.108 .
Anselmo A C, Prabhakarpandian B, Pant K, Mitragotri S . Transl Mater Res , 2017 . 4 ( 1 ): 014001 DOI:10.1088/2053-1613/aa5468http://doi.org/10.1088/2053-1613/aa5468 .
Youn Y S, Bae Y H . Adv Drug Deliv Rev , 2018 . 130 3 - 11 . DOI:10.1016/j.addr.2018.05.008http://doi.org/10.1016/j.addr.2018.05.008 .
Sun X R, Wang G W, Zhang H, Hu S Q, Liu X, Tang J B, Shen Y Q . ACS Nano , 2018 . 12 ( 6 ): 6179 - 6192 . DOI:10.1021/acsnano.8b02830http://doi.org/10.1021/acsnano.8b02830 .
Ooya T, Eguchi M, Yui N . J Am Chem Soc , 2003 . 125 ( 43 ): 13016 - 13017 . DOI:10.1021/ja034583zhttp://doi.org/10.1021/ja034583z .
Yui N . Macromol Symp , 2009 . 279 158 - 162 . DOI:10.1002/masy.v279:1http://doi.org/10.1002/masy.v279:1 .
Okada M, Harada A . Org Lett , 2004 . 6 ( 3 ): 361 - 364 . DOI:10.1021/ol0361608http://doi.org/10.1021/ol0361608 .
Li J, Yang C, Li H, Wang X, Goh S H, Ding J L, Wang D Y, Leong K W . Adv Mater , 2006 . 18 ( 22 ): 2969 - 2974 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Yu S L, Zhang Y J, Wang X, Zhen X, Zhang Z H, Wu W, Jiang X Q . Angew Chem Int Ed , 2013 . 52 ( 28 ): 7272 - 7277 . DOI:10.1002/anie.201301397http://doi.org/10.1002/anie.201301397 .
Zhang Yajun(张亚军), Zhang Zhengkui(张正奎), Chen Weizhi(陈伟芝), Li Cheng(李成), Wu Wei(武伟), Jiang Xiqun(蒋锡群) . 高分子学报 , Acta Polymerica Sinica , 2017 . ( 2 ): 306 - 314.
Zhang J L, Zhang L E, Shun L, Yin C F, Li C, Wu W, Jiang X Q . ACS Biomater Sci Eng , 2018 . 4 ( 6 ): 1963 - 1968 . DOI:10.1021/acsbiomaterials.7b00464http://doi.org/10.1021/acsbiomaterials.7b00464 .
Jackson C L, Chanzy H D, Booy F P, Drake B J, Tomalia D A, Bauer B J, Amis E J . Macromolecules , 1998 . 31 ( 18 ): 6259 - 6265 . DOI:10.1021/ma9806155http://doi.org/10.1021/ma9806155 .
Wu W, Drissen W, Jiang X Q . J Am Chem Soc , 2014 . 136 ( 8 ): 3145 - 3155 . DOI:10.1021/ja411457rhttp://doi.org/10.1021/ja411457r .
Zhang Y J, Chen W Z, Yang C C, Fan Q L, Wu W, Jiang X Q . J Control Release , 2016 . 237 ( 1 ): 115 - 124.
Müllner M, Dodds S J, Nguyen T H, Senyschyn D, Porter C J H, Boyd B J, Caruso F . ACS Nano , 2015 . 9 ( 2 ): 1294 - 1304 . DOI:10.1021/nn505125fhttp://doi.org/10.1021/nn505125f .
Müllner M, Mehta D, Nowell C J, Porter C J H . Chem Commun , 2016 . ( 52 ): 9121 - 9124.
Zhang Y J, Zhang Z K, Liu C R, Chen W Z, Li C, Wu W, Jiang X Q . Polym Chem , 2017 . 8 ( 10 ): 1672 - 1679 . DOI:10.1039/C6PY01941Bhttp://doi.org/10.1039/C6PY01941B .
0
浏览量
38
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构