浏览全部资源
扫码关注微信
复旦大学高分子科学系 上海 200438
[ "徐宇曦,男,1985年出生. 博士,复旦大学高分子科学系研究员、博士生导师、上海市东方学者特聘教授、中国科协(中国化学会)青年托举人才. 2007年本科毕业于武汉大学,2011年博士毕业于清华大学,2011 ~ 2015年在加州大学洛杉矶分校从事博士后研究. 以第二获奖人获得2016年度国家自然科学二等奖和2013年度教育部自然科学一等奖,入选2018年全球高被引科学家(Clarivate Analytics). 主要从事新型高分子和石墨烯等低维材料的化学制备、可控组装复合及其在能源、环境中的应用" ]
纸质出版日期:2019-3,
网络出版日期:2018-12-29,
收稿日期:2018-10-17,
修回日期:2018-11-21,
扫 描 看 全 文
刘晶晶, 徐宇曦. 三维石墨烯复合物和二维高分子的合成和电化学能源应用探索[J]. 高分子学报, 2019,50(3):219-232.
Jing-jing Liu, Yu-xi Xu. Three-dimensional Graphene-based Composites and Two-dimensional Polymers: Synthesis and Application in Energy Storage and Conversion[J]. Acta Polymerica Sinica, 2019,50(3):219-232.
刘晶晶, 徐宇曦. 三维石墨烯复合物和二维高分子的合成和电化学能源应用探索[J]. 高分子学报, 2019,50(3):219-232. DOI: 10.11777/j.issn1000-3304.2019.18222.
Jing-jing Liu, Yu-xi Xu. Three-dimensional Graphene-based Composites and Two-dimensional Polymers: Synthesis and Application in Energy Storage and Conversion[J]. Acta Polymerica Sinica, 2019,50(3):219-232. DOI: 10.11777/j.issn1000-3304.2019.18222.
石墨烯是具有单原子厚度的二维碳原子晶体,也是一种独特的天然二维高分子. 柔性石墨烯片层可以通过三维组装形成多孔的块体材料,从而将单个微观石墨烯的特性有效的发挥到宏观材料层面,推进石墨烯的实际应用. 与此同时,随着人类社会对绿色可持续性能源的不断需求,基于石墨烯开发高效的电化学能源存储与转换材料成为当前研究的重要课题. 受石墨烯这一天然二维高分子结构的启发,科学家们希望从原子或分子层面进一步理性设计合成新型二维高分子,获得新的骨架联接并具有优异可加工性能的新型二维材料并探索其在能源等领域的应用,这一研究领域充满巨大挑战. 本专论将系统介绍我们设计合成了一系列新型电化学活性材料并与三维石墨烯有效复合制备成三维石墨烯复合物,以及灵巧合成了几种新型骨架联接的二维高分子材料,并重点实现这两个相辅相成方向在电化学能源存储和转化方面的应用探索,为解决电化学能源需求问题提供崭新的突破口.
A carbon sheet with single-atom thickness
graphene is unique for its nature in two-dimensional polymers (2DP). Recently
three-dimensional (3D) graphene architecture assembled from flexible 2D graphene
via
non-covalent interaction has attracted great attention
for the collective interaction between graphene sheets enables various functional advances while having the intrinsic properties of individual sheet well preserved. Typical macrostructures of 3D graphene involve hierarchical porosity
large specific surface area
superior mechanical strength
and excellent electrical conductivity
which endow this emerging material with great potential in catalytic
environmental
biomedical
and to the upmost importance
energy-related applications. Ever-growing concerns caused by fossil fuels about sustainability and environmental issues have urged extensive research on high-performance materials for electrochemical energy storage and conversion. Taking advantage of the controlled synthesis of novel electrochemically active nanomaterials and their efficient integration with 3D graphene framework
our group is innovatively developed several versatile strategies and successfully fabricated a series of 3D graphene composites. Carrying elaborate microstructures and synergistic effect
as-obtained materials demonstrate outstanding electrochemical performance when employed in flexible electrodes and devices such as supercapacitors
lithium/sodium-ion batteries
lithium-sulfur batteries
and electrocatalysts. Our studies have been decently recognized as effective solutions to address the impending energy problems. Meanwhile
the natural 2DP attribute of graphene has aroused great enthusiasm for rational organic synthesis of new 2DPs at the atomic or molecular level. The controllable synthesis of 2DPs with tailored molecular structure and excellent processability can promote immensely the progress of polymer synthetic chemistry. Further
it exhibits vast strength in the development of novel polymeric materials that hold desirable properties and functions rare in conventional one-dimensional polymers. Since it is challenging but meaningful in the energy arene to design and synthesize 2DPs that integrate simultaneously 2D conjugated plane
in-plane uniform micropores
and electrochemical active groups. This feature article summarizes the synthesis of 3D graphene-based composites and 2DPs progressed in our group
followed by their applications in energy storage and conversion. The contribution ends with brief discussions and outlook about the future challenges and opportunities of graphene materials and relevant research field.
三维石墨烯复合材料二维高分子电化学能源存储与转换柔性电极与器件
Three-dimensional grapheneComposite materialsTwo-dimensional polymersEnergy storage and conversionFlexible electrode and devices
Geim A K, Novoselov K S . Nat Mater , 2007 . 6 183 - 191 . DOI:10.1038/nmat1849http://doi.org/10.1038/nmat1849 .
Xu Y X, Sheng K X, Li C, Shi G Q . ACS Nano , 2010 . 4 4324 - 4330 . DOI:10.1021/nn101187zhttp://doi.org/10.1021/nn101187z .
Xu Y X, Wu Q, Sun Y Q, Bai H, Shi G Q . ACS Nano , 2010 . 4 7358 - 7362 . DOI:10.1021/nn1027104http://doi.org/10.1021/nn1027104 .
Wang M, Duan X D, Xu Y X . ACS Nano , 2016 . 10 7231 - 7247 . DOI:10.1021/acsnano.6b03349http://doi.org/10.1021/acsnano.6b03349 .
Xu Y X, Shi G Q, Duan X F . Acc Chem Res , 2015 . 48 1666 - 1675 . DOI:10.1021/acs.accounts.5b00117http://doi.org/10.1021/acs.accounts.5b00117 .
Colson J W, Dichtel W R . Nat Chem , 2013 . 5 453 - 465 . DOI:10.1038/nchem.1628http://doi.org/10.1038/nchem.1628 .
Sakamoto J, van Heijst J, Lukin O, Schluter A D . Angew Chem Int Ed , 2009 . 48 1030 - 1069 . DOI:10.1002/anie.v48:6http://doi.org/10.1002/anie.v48:6 .
Anderson M R, Mattes B R, Kaner R B . Science , 1991 . 252 1412 - 1415 . DOI:10.1126/science.252.5011.1412http://doi.org/10.1126/science.252.5011.1412 .
Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S . J Am Chem Soc , 2015 . 137 8352 - 8355 . DOI:10.1021/jacs.5b04147http://doi.org/10.1021/jacs.5b04147 .
Wang S, Wang Q Y, Shao P P, Han Y Z, Gao X, Ma L, Yuan S, Ma X J, Zhou J W, Feng X, Wang B . 2017, J Am Chem Soc , 2017 . 139 4258 - 4261.
Li A, Lu R F, Wang Y, Wang X, Han K L, Deng W Q . Angew Chem Int Ed , 2010 . 49 3330 - 3333 . DOI:10.1002/anie.200906936http://doi.org/10.1002/anie.200906936 .
Talapaneni S N, Hwang T H, Je S H, Buyukcakir O, Choi J W, Coskun A . Angew Chem Int Ed , 2016 . 128 3158 - 3163 . DOI:10.1002/ange.201511553http://doi.org/10.1002/ange.201511553 .
Xiao P T, Xu Y X . J Mater Chem A , 2018 . DOI:10.1039/C8TA02820Fhttp://doi.org/10.1039/C8TA02820F .
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S W, Grigorieva I V, Firsov A A . Science , 2004 . 306 666 - 669 . DOI:10.1126/science.1102896http://doi.org/10.1126/science.1102896 .
Cote L J, Cruz-Silva R, Huang J . J Am Chem Soc , 2009 . 131 11027 - 11032 . DOI:10.1021/ja902348khttp://doi.org/10.1021/ja902348k .
Schwenke A M, Hoeppener S, Schubert U S . Adv Mater , 2015 . 27 4113 - 4141 . DOI:10.1002/adma.v27.28http://doi.org/10.1002/adma.v27.28 .
Voiry D, Yang J, Kupferberg J, Fullon R, Lee C, Jeong H Y, Shin H S, Chhowalla M . Science , 2016 . 353 1413 - 1415 . DOI:10.1126/science.aah3398http://doi.org/10.1126/science.aah3398 .
Zhu Y W, Murali S, Stoller M D, Welamakanni A, Piner R D Ruoff R S . Carbon , 2010 . 48 2118 - 2122 . DOI:10.1016/j.carbon.2010.02.001http://doi.org/10.1016/j.carbon.2010.02.001 .
Liu R Z, Zhang Y, Ning Z J, Xu Y X . Angew Chem Int Ed , 2017 . 56 15677 - 15682 . DOI:10.1002/anie.201708714http://doi.org/10.1002/anie.201708714 .
Cao X H, Yin Z Y, Zhang H . Energy Environ Sci , 2017 . 7 1850 - 1866.
Su D, Cortie M, Fan H, Wang G . Adv Mater , 2017 . 29 1700587 - 1700594 . DOI:10.1002/adma.v29.48http://doi.org/10.1002/adma.v29.48 .
Shekhah O, Liu J Fischer R A, Woll C . Chem Soc Rew , 2011 . 40 1081 - 1106 . DOI:10.1039/c0cs00147chttp://doi.org/10.1039/c0cs00147c .
Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodeneough J B . Angew Chem Int Ed , 2013 . 52 1946 - 1967.
Bu F X, Feng X X, Jiang T C, Shakir I, Xu Y X . Chem Eur J , 2017 . 23 8358 - 8363 . DOI:10.1002/chem.v23.35http://doi.org/10.1002/chem.v23.35 .
Atwater H A, Polman A . Nat Mater , 2010 . 9 205 - 213 . DOI:10.1038/nmat2629http://doi.org/10.1038/nmat2629 .
Zhang D, Gokce B, Barcikowski S . Chem Rev , 2017 . 117 3990 - 4103 . DOI:10.1021/acs.chemrev.6b00468http://doi.org/10.1021/acs.chemrev.6b00468 .
Wang H, Lee H W, Deng Y, Lu Z, Hsu P C, Liu Y, Lin D, Cui Y . Nat Commun , 2015 . 6 7261 DOI:10.1038/ncomms8261http://doi.org/10.1038/ncomms8261 .
Chen Y, Egan G C, Wan J, Zhu S, Jacob R J, Zhou W, Dai J, Wang Y, Danner V A, Yao Y, Fu K, Wang Y, Bao W, Li T, Zachariah M R, Hu L . Nat Commun , 2016 . 7 12332 DOI:10.1038/ncomms12332http://doi.org/10.1038/ncomms12332 .
Wan Bui H, Grillo F, van Ommen J R . Chem Commun , 2016 . 53 45 - 71.
Xiao P T, Bu F X, Zhao R R, Imran S, Xu Y X . ACS Nano , 2018 . 12 3947 - 3953 . DOI:10.1021/acsnano.8b01488http://doi.org/10.1021/acsnano.8b01488 .
Zhang L, Wu H B, Madhavi S, Lou X W . J Am Chem Soc , 2012 . 134 17388 - 17391 . DOI:10.1021/ja307475chttp://doi.org/10.1021/ja307475c .
Hu M, Belik A A, Imura M, Mibu K, Tsujimoto Y, Yamauchi Y . Chem Mater , 2012 . 24 2698 - 2707 . DOI:10.1021/cm300615shttp://doi.org/10.1021/cm300615s .
Jiang T C, Bu F X, Feng X X, Imran S, Hao G L, Xu Y X . ACS Nano , 2017 . 11 5140 - 5147 . DOI:10.1021/acsnano.7b02198http://doi.org/10.1021/acsnano.7b02198 .
Cao X H, Zheng B, Rui X H, Shi W H, Yan Q Y, Zhang H . Angew Chem Int Ed , 2014 . 53 1404 - 1409 . DOI:10.1002/anie.v53.5http://doi.org/10.1002/anie.v53.5 .
Zhu X, Zhu Y, Murali S, Stoller M D, Ruoff R S . ACS Nano , 2011 . 5 3333 - 3338 . DOI:10.1021/nn200493rhttp://doi.org/10.1021/nn200493r .
Bu F X, Xiao P T, Chen J D, Imran Shakir, Xu Y X . J Mater Chem A , 2018 . 6 6414 - 6421 . DOI:10.1039/C7TA11111Hhttp://doi.org/10.1039/C7TA11111H .
Bu F X, Chen W S, Gu J J, Agboola P O, Shakir I, Xu Y X . Chem Sci , 2018 . 9 7009 - 7016 . DOI:10.1039/C8SC02444Hhttp://doi.org/10.1039/C8SC02444H .
Manthiram A, Fu Y, Chung S H, Zu C, Su Y S . Chem Rev , 2014 . 23 11751 - 11787.
Chung S H, Chang C H, Manthiram A . Energy Environ Sci , 2016 . 9 3188 - 3200 . DOI:10.1039/C6EE01280Ahttp://doi.org/10.1039/C6EE01280A .
Lin C, Niu C J, Xu X, Li K, Cai Z Y, Zhang Y L, Wang X P, Xu Y X, Mai L Q . Phys Chem Chem Phys , 2016 . 18 22146 - 22153 . DOI:10.1039/C6CP03624Dhttp://doi.org/10.1039/C6CP03624D .
Xiao P T, Bu F X, Yang G H, Zhang Y, Xu Y X . Adv Mater , 2017 . 29 1703324 DOI:10.1002/adma.201703324http://doi.org/10.1002/adma.201703324 .
Xiao P T, Sun L X, Liao D K, Shakir, Xu Y X . ACS Appl Mater Interfaces , 2018 . 10 33269 - 33275 . DOI:10.1021/acsami.8b11883http://doi.org/10.1021/acsami.8b11883 .
Song Z, Zhan H, Zhou Y . Angew Chem Int Ed , 2010 . 49 8444 - 8448 . DOI:10.1002/anie.201002439http://doi.org/10.1002/anie.201002439 .
Schon T B, McAllister B T, Li P F, Seferos D S . Chem Soc Rev , 2016 . 45 6345 - 6404 . DOI:10.1039/C6CS00173Dhttp://doi.org/10.1039/C6CS00173D .
Song Z, Zhou H . Energy Environ Sci , 2013 . 6 2280 - 2301 . DOI:10.1039/c3ee40709hhttp://doi.org/10.1039/c3ee40709h .
Yang G H, Zhang Y, Huang Y S, Shakir I, Xu Y X . Phys Chem Chem Phys , 2016 . 18 31361 - 31377 . DOI:10.1039/C6CP06754Ahttp://doi.org/10.1039/C6CP06754A .
Zhang K, Guo C, Zhao Q, Niu Z, Chen J . Adv Sci , 2015 . 2 15000018 .
Yang G H, Bu F X, Huang Y S, Zhang Y, Imran S, Xu Y X . ChemSusChem , 2017 . 10 3419 - 3426 . DOI:10.1002/cssc.201701175http://doi.org/10.1002/cssc.201701175 .
Huang Y S, Li K, Liu J J, Zhong X, Duan X F, Shakir I, Xu Y X . J Mater Chem A , 2017 . 5 2710 - 2716 . DOI:10.1039/C6TA09754Ehttp://doi.org/10.1039/C6TA09754E .
Zhang Y, Huang Y S, Yang G H, Bu F X, Li K, Shakir I, Xu Y X . ACS Appl Mater Interfaces , 2017 . 9 15549 - 15556 . DOI:10.1021/acsami.7b03687http://doi.org/10.1021/acsami.7b03687 .
Huang Y S, Li K, Yang G H, Shakir I, Xu Y X . Small , 2018 . 14 1703969 DOI:10.1002/smll.v14.13http://doi.org/10.1002/smll.v14.13 .
Yang Z, Deng J, Chen X, Ren J, Peng H . Angew Chem Int Ed , 2013 . 52 13453 DOI:10.1002/anie.201307619http://doi.org/10.1002/anie.201307619 .
Li K, Liu J J, Huang Y S, Bu F X, Xu Y X . J Mater Chem A , 2017 . 5 5466 - 5474 . DOI:10.1039/C6TA11224Bhttp://doi.org/10.1039/C6TA11224B .
Zhao R R, Li K, Liu R Z, Shakir I, Xu Y X . J Mater Chem A , 2017 . 5 19098 - 19106 . DOI:10.1039/C7TA05908Fhttp://doi.org/10.1039/C7TA05908F .
Li K, Huang Y S, Liu J J, Shakir I, Xu Y X . J Mater Chem A , 2018 . 6 1802 - 1808 . DOI:10.1039/C7TA09041Bhttp://doi.org/10.1039/C7TA09041B .
Lafferentz L, Eberhardt V, Dri C, Africh C, Gomeli G, Esch F, Hecht S, Grill L . Nat Chem , 2012 . 4 215 - 220 . DOI:10.1038/nchem.1242http://doi.org/10.1038/nchem.1242 .
Chen L, Hernandez Y, Feng X L, Müllen K . Angew Chem Int Ed , 2012 . 51 7640 - 7654 . DOI:10.1002/anie.201201084http://doi.org/10.1002/anie.201201084 .
Bunck D N, Dichtel W R . J Am Chem Soc , 2013 . 135 14952 - 14955 . DOI:10.1021/ja408243nhttp://doi.org/10.1021/ja408243n .
Liu W, Luo X, Bao Y, Liu Y P, Ning G H, Abdelwahab I, Li L, Nai C T, Hu Z G, Zhao D, Liu B, Quek S Y, Loh K P . Nat Chem , 2017 . 9 563 - 570 . DOI:10.1038/nchem.2696http://doi.org/10.1038/nchem.2696 .
Kissel P, Murray D J, Wulftange WJ, Catalano V J, King B T . Nat Chem , 2014 . 6 774 - 778 . DOI:10.1038/nchem.2008http://doi.org/10.1038/nchem.2008 .
Yang Y, Bu F X, Liu J J, Imran Shakir, Xu Y X . Chem Commun , 2017 . 53 7481 - 7484 . DOI:10.1039/C7CC02648Jhttp://doi.org/10.1039/C7CC02648J .
Liu J J, Zan W, Li K, Yang Y, Bu F X, Xu Y X . J Am Chem Soc , 2017 . 139 11666 - 11669 . DOI:10.1021/jacs.7b05025http://doi.org/10.1021/jacs.7b05025 .
Waller P J, Gandara F, Yaghi O M . Acc Chem Res , 2015 . 48 3053 - 3063 . DOI:10.1021/acs.accounts.5b00369http://doi.org/10.1021/acs.accounts.5b00369 .
Cote A P, Benin A I, Ockwig N W, Keeffe M O, Matzger A J, Yaghi O M . Science , 2005 . 310 1166 - 1170 . DOI:10.1126/science.1120411http://doi.org/10.1126/science.1120411 .
Ding S Y, Wang W . Chem Soc Rev , 2013 . 42 548 - 568 . DOI:10.1039/C2CS35072Fhttp://doi.org/10.1039/C2CS35072F .
Shouvik M, Himadri S S, Tanay K, Rahul B . J Am Chem Soc , 2017 . 139 4513 - 4520 . DOI:10.1021/jacs.7b00925http://doi.org/10.1021/jacs.7b00925 .
Berlanga I, Gonzalez M L R, Fierro J L G, Balleste R M, Zamora F . Small , 2011 . 7 1207 - 1211 . DOI:10.1002/smll.v7.9http://doi.org/10.1002/smll.v7.9 .
Chandra S, Kandambeth S, Biswal B P, Heine T, Banerjee R . J Am Chem Soc , 2013 . 135 17853 - 17861 . DOI:10.1021/ja408121phttp://doi.org/10.1021/ja408121p .
Liu J J, Lyu P B, Zhang Y, Nachtigall P, Xu Y X . Adv Mater , 2018 . 30 1705401 DOI:10.1002/adma.201705401http://doi.org/10.1002/adma.201705401 .
0
浏览量
22
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构