浏览全部资源
扫码关注微信
1.清华大学化学系 北京 100084
2.University of California, Los Angeles, CA 90095, USA
3.Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
E-mail: chaowangthu@mail.tsinghua.edu.cn Chao Wang, E-mail: chaowangthu@mail.tsinghua.edu.cn
纸质出版日期:2019-3,
网络出版日期:2019-1-23,
收稿日期:2018-11-8,
修回日期:2018-12-11,
扫 描 看 全 文
李梦雪, 吴海平, 朱有龙, 王朝. 力学自适应性电学高分子的简介、设计及其应用[J]. 高分子学报, 2019,50(3):247-260.
Meng-xue Li, Hai-ping Wu, You-long Zhu, Chao Wang. Mechanically Adaptive Electronic Polymers: Introduction, Design and Applications[J]. Acta Polymerica Sinica, 2019,50(3):247-260.
李梦雪, 吴海平, 朱有龙, 王朝. 力学自适应性电学高分子的简介、设计及其应用[J]. 高分子学报, 2019,50(3):247-260. DOI: 10.11777/j.issn1000-3304.2019.18237.
Meng-xue Li, Hai-ping Wu, You-long Zhu, Chao Wang. Mechanically Adaptive Electronic Polymers: Introduction, Design and Applications[J]. Acta Polymerica Sinica, 2019,50(3):247-260. DOI: 10.11777/j.issn1000-3304.2019.18237.
力学自适应性高分子是指能够适应外力作用而几乎不产生力学损伤的一类高分子材料. 而力学自适应性电学高分子是具有良好的传导电荷或离子能力的一种高分子材料,同时还能够适应力学损伤,由于这类材料同时具有良好的电学和力学性能,有望在可穿戴电子器件、能源和生物医药领域产生广泛的应用前景. 本综述主要介绍了力学自适应性电学高分子的设计原则,合成/制备路线和应用前景. 力学自适应电学高分子设计原则的核心是结合分子化学和超分子化学的理念,通过把动态化学键引入到高分子体系中,使其同时具有电学和力学适应性. 通过将材料设计理念引入到高分子制备中,力学自适应性离子导体和电子导体得以成功制备. 力学自适应性电学高分子有望在可穿戴电子器件,储能器件和人工肌肉等领域带来新的突破.
Mechanically adaptive polymers (MAPs) can regulate their mechanical properties in response to external stimuli or environmental changes
such as pressure
temperature
humidity
etc
. In recent years
mechanically adaptive electronic polymers (MAEPs)
which integrate delicate electronic functions together with mechanical adaptive properties
are expected to play important roles in such fields as wearable electronics
biomedical devices
and energy storage systems. This new type of polymer materials have attracted growing attention from both academia and industry. In this review article
a brief introduction is firstly given to mechanically adaptive electronic polymers
and several representative works in the related research field are described in the following
with specific focuses on the design principles
synthetic/preparation routes
and potential applications of these emerging polymeric materials. The key principle of MAEPs design sits in the combination of molecular chemistry and supramolecular chemistry
for it functions essentially in tuning the polymer structure and properties on a molecular level. When dynamic bonds (
e
.
g
. hydrogen bond
metal-ligand interaction
π
-
π
stacking) are incorporated into the polymer system with electronic active units
products obtained will possess simultaneously the required electronic functions and adaptive mechanics properties. Generally
MAEPs fall into two major categories according to their working mechanisms
namely
self-healing electronic polymers and energy dissipating polymers. Elaborate material designs have realized a variety of successful demonstrations for both mechanically adaptive electrical conductors and mechanically adaptive ionic conductors. The booming of mechanically adaptive electronic polymers is expected to bring new breakthroughs in the area of wearable electronics
energy storage devices
and artificial muscles
etc. Challenges and outlook in this burgeoning area are discussed in the end. Enormous challenges still remain despite the significant advances have made already. For instance
the polymer performance requires further improvement for practical applications. Meanwhile
new polymer structures
novel synthetic methods
and innovative design strategies are also desired for the development of MAEPs.
力学自适应电学高分子自修复能量耗散动态化学键超分子化学
Mechanically adaptiveElectronic polymerSelf-healingEnergy dissipationDynamic bondSupramolecular chemistry
Wang S, Oh J Y, Xu J, Tran H, Bao Z . Acc Chem Res , 2018 . 51 ( 5 ): 1033 - 1045 . DOI:10.1021/acs.accounts.8b00015http://doi.org/10.1021/acs.accounts.8b00015 .
Someya T, Bao Z, Malliaras G G . Nature , 2016 . 540 ( 7633 ): 379 - 385 . DOI:10.1038/nature21004http://doi.org/10.1038/nature21004 .
Zhang X, Wang C . Chem Soc Rev , 2011 . 40 ( 1 ): 94 - 101 . DOI:10.1039/B919678Chttp://doi.org/10.1039/B919678C .
Blaiszik B J, Kramer S L B, Olugebefola S C, Moore J S, Sottos N R, White S R. Self-Healing Polymers and Composites. In: Clarke D R, Ruhle M, Zok F eds. Annual Review of Materials Research, 2010. 179-211
Williams K A, Boydston A J, Bielawski C W . J R Soc Interface , 2007 . 4 ( 13 ): 359 - 362 . DOI:10.1098/rsif.2006.0202http://doi.org/10.1098/rsif.2006.0202 .
Blaiszik B J, Kramer S L, Grady M E, McIlroy D A, Moore J S, Sottos N R, White S R . Adv Mater , 2012 . 24 ( 3 ): 398 - 401 . DOI:10.1002/adma.201102888http://doi.org/10.1002/adma.201102888 .
Li Y, Chen S S, Wu M C, Sun J Q . Adv Mater , 2012 . 24 ( 33 ): 4578 - 4582 . DOI:10.1002/adma.v24.33http://doi.org/10.1002/adma.v24.33 .
Tee B C, Wang C, Allen R, Bao Z . Nat Nanotechnol , 2012 . 7 ( 12 ): 825 - 832 . DOI:10.1038/nnano.2012.192http://doi.org/10.1038/nnano.2012.192 .
Wang H, Zhu B, Jiang W, Yang Y, Leow W R, Wang H, Chen X . Adv Mater , 2014 . 26 ( 22 ): 3638 - 3643 . DOI:10.1002/adma.v26.22http://doi.org/10.1002/adma.v26.22 .
Wang C, Wu H, Chen Z, McDowell M T, Cui Y, Bao Z . Nat Chem , 2013 . 5 ( 12 ): 1042 - 1048 . DOI:10.1038/nchem.1802http://doi.org/10.1038/nchem.1802 .
Chen Z, Wang C, Lopez J, Lu Z D, Cui Y, Bao Z A . Adv Energy Mater , 2015 . 5 ( 8.
Choi S, Kwon T W, Coskun A, Choi J W . Science , 2017 . 357 ( 6348 ): 279 - 283 . DOI:10.1126/science.aal4373http://doi.org/10.1126/science.aal4373 .
Kang S, Jones A R, Moore J S, White S R, Sottos N R . Adv Funct Mater , 2014 . 24 ( 20 ): 2947 - 2956 . DOI:10.1002/adfm.v24.20http://doi.org/10.1002/adfm.v24.20 .
So J H, Thelen J, Qusba A, Hayes G J, Lazzi G, Dickey M D . Adv Funct Mater , 2009 . 19 ( 22 ): 3632 - 3637 . DOI:10.1002/adfm.v19:22http://doi.org/10.1002/adfm.v19:22 .
Odom S A, Caruso M M, Finke A D, Prokup A M, Ritchey J A, Leonard J H, White S R, Sottos N R, Moore J S . Adv Funct Mater , 2010 . 20 ( 11 ): 1721 - 1727 . DOI:10.1002/adfm.201000159http://doi.org/10.1002/adfm.201000159 .
Odom S A, Chayanupatkul S, Blaiszik B J, Zhao O, Jackson A C, Braun P V, Sottos N R, White S R, Moore J S . Adv Mater , 2012 . 24 ( 19 ): 2578 - 2581, 2509 . DOI:10.1002/adma.v24.19http://doi.org/10.1002/adma.v24.19 .
Kang H S, Kim H T, Park J K, Lee S . Adv Functl Mater , 2014 . 24 ( 46 ): 7273 - 7283 . DOI:10.1002/adfm.v24.46http://doi.org/10.1002/adfm.v24.46 .
Li Y, Chen S, Wu M, Sun J . ACS Appl Mater Interfaces , 2014 . 6 ( 18 ): 16409 - 16415 . DOI:10.1021/am504829zhttp://doi.org/10.1021/am504829z .
Gong C, Liang J, Hu W, Niu X, Ma S, Hahn H T, Pei Q . Adv Mater , 2013 . 25 ( 30 ): 4186 - 4191 . DOI:10.1002/adma.201301069http://doi.org/10.1002/adma.201301069 .
Lai J C, Mei J F, Jia X Y, Li C H, You X Z, Bao Z . Adv Mater , 2016 . 28 ( 37 ): 8277 - 8282 . DOI:10.1002/adma.v28.37http://doi.org/10.1002/adma.v28.37 .
Pyo K H, Lee D H, Kim Y, Kim J W . J Mater Chem C , 2016 . 4 ( 5 ): 972 - 977 . DOI:10.1039/C5TC04030Bhttp://doi.org/10.1039/C5TC04030B .
D'Elia E, Barg S, Ni N, Rocha V G, Saiz E . Adv Mater , 2015 . 27 ( 32 ): 4788 - 4794 . DOI:10.1002/adma.v27.32http://doi.org/10.1002/adma.v27.32 .
Wu T F, Chen B Q . J Mater Chem C , 2016 . 4 ( 19 ): 4150 - 4154 . DOI:10.1039/C6TC01052Khttp://doi.org/10.1039/C6TC01052K .
Guo K, Zhang D L, Zhang X M, Zhang J, Ding L S, Li B J, Zhang S . Angew Chem Int Ed , 2015 . 54 ( 41 ): 12127 - 12133 . DOI:10.1002/anie.201505790http://doi.org/10.1002/anie.201505790 .
Shi Y, Wang M, Ma C, Wang Y, Li X, Yu G . Nano Lett , 2015 . 15 ( 9 ): 6276 - 6281 . DOI:10.1021/acs.nanolett.5b03069http://doi.org/10.1021/acs.nanolett.5b03069 .
Keplinger C, Sun J Y, Foo C C, Rothemund P, Whitesides G M, Suo Z . Science , 2013 . 341 ( 6149 ): 984 - 987 . DOI:10.1126/science.1240228http://doi.org/10.1126/science.1240228 .
Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X, Zhi C . Nat Commun , 2015 . 6 ( 10310.
Cao Y, Morrissey T G, Acome E, Allec S I, Wong B M, Keplinger C, Wang C . Adv Mater , 2017 . 29 ( 10 ): 1605099 DOI:10.1002/adma.201605099http://doi.org/10.1002/adma.201605099 .
Zhao X . Soft Matter , 2014 . 10 ( 5 ): 672 - 687 . DOI:10.1039/C3SM52272Ehttp://doi.org/10.1039/C3SM52272E .
Lake G J, Thomas A G . Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences , 1967 . 300 ( 1460 ): 108 - 119.
Sun J Y, Zhao X, Illeperuma W R, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z . Nature , 2012 . 489 ( 7414 ): 133 - 136 . DOI:10.1038/nature11409http://doi.org/10.1038/nature11409 .
Zhao X, Huebsch N, Mooney D J, Suo Z . J Appl Phys , 2010 . 107 ( 6 ): 63509 DOI:10.1063/1.3343265http://doi.org/10.1063/1.3343265 .
Yang W, Furukawa H, Gong J P . Adv Mater , 2008 . 20 ( 23 ): 4499 - 4503 . DOI:10.1002/adma.v20:23http://doi.org/10.1002/adma.v20:23 .
Huang T, Xu H G, Jiao K X, Zhu L P, Brown H R, Wang H L . Adv Mater , 2007 . 19 ( 12 ): 1622 - 1626 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Azuma C, Yasuda K, Tanabe Y, Taniguro H, Kanaya F, Nakayama A, Chen Y M, Gong J P, Osada Y . J Biomed Mater Res A , 2007 . 81 ( 2 ): 373 - 380.
Lee K Y, Kong H J, Larson R G, Mooney D J . Adv Mater , 2003 . 15 ( 21 ): 1828 - 1832 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Tuncaboylu D C, Sari M, Oppermann W, Okay O . Macromolecules , 2011 . 44 ( 12 ): 4997 - 5005 . DOI:10.1021/ma200579vhttp://doi.org/10.1021/ma200579v .
Myung D, Koh W U, Ko J M, Hu Y, Carrasco M, Noolandi J, Ta C N, Frank C W . Polymer , 2007 . 48 ( 18 ): 5376 - 5387 . DOI:10.1016/j.polymer.2007.06.070http://doi.org/10.1016/j.polymer.2007.06.070 .
Lin S, Yuk H, Zhang T, Parada G A, Koo H, Yu C, Zhao X . Adv Mater , 2016 . 28 ( 22 ): 4497 - 4505 . DOI:10.1002/adma.v28.22http://doi.org/10.1002/adma.v28.22 .
Yuk H, Zhang T, Parada G A, Liu X, Zhao X . Nat Commun , 2016 . 7 ( 12028.
Chen B, Lu J J, Yang C H, Yang J H, Zhou J, Chen Y M, Suo Z . ACS Appl Mater Interfaces , 2014 . 6 ( 10 ): 7840 - 7845 . DOI:10.1021/am501130thttp://doi.org/10.1021/am501130t .
Wu H, Cao Y, Su H, Wang C . Angew Chem Int Ed , 2018 . 57 ( 5 ): 1361 - 1365 . DOI:10.1002/anie.201709774http://doi.org/10.1002/anie.201709774 .
0
浏览量
77
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构