浏览全部资源
扫码关注微信
1.华南理工大学 生物医学科学与工程学院 生命科学研究院 广州 510006
2.中国科学技术大学生命科学学院 合肥 230026
E-mail: djzhi@scut.edu.cn
E-mail: mcjwang@scut.edu.cn
纸质出版日期:2019-6,
网络出版日期:2019-4-28,
收稿日期:2018-12-14,
修回日期:2019-3-16,
扫 描 看 全 文
李洪军, 刘晶, 杜金志, 王均. 基于TACMAA化学的肿瘤微酸性环境响应高分子纳米药物载体[J]. 高分子学报, 2019,50(6):567-574.
Hong-jun Li, Jing Liu, Jin-zhi Du, Jun Wang. TACMAA Chemistry-based Tumor Extracellular pH-responsive Polymeric Nanomaterials for Drug Delivery[J]. Acta Polymerica Sinica, 2019,50(6):567-574.
李洪军, 刘晶, 杜金志, 王均. 基于TACMAA化学的肿瘤微酸性环境响应高分子纳米药物载体[J]. 高分子学报, 2019,50(6):567-574. DOI: 10.11777/j.issn1000-3304.2019.18268.
Hong-jun Li, Jing Liu, Jin-zhi Du, Jun Wang. TACMAA Chemistry-based Tumor Extracellular pH-responsive Polymeric Nanomaterials for Drug Delivery[J]. Acta Polymerica Sinica, 2019,50(6):567-574. DOI: 10.11777/j.issn1000-3304.2019.18268.
过去几十年,纳米技术在药物递送、分子影像、肿瘤治疗等领域获得了广泛的应用. 相比小分子药物,纳米药物具有提高药物成药性、改善药物分布、降低毒副作用等特点,但是,纳米药物需面临复杂的体内递送过程,才能最终到达靶部位发挥药效. 有针对性地设计高分子载体材料的结构,使其对体内微环境产生特异性的响应以改变纳米载体性能,适应体内药物递送复杂环境,是提高纳米药物递送效率的重要策略. 本文系统介绍了我们如何思考归纳纳米药物体内递送的复杂过程,并进一步提出基于肿瘤组织酸性微环境调控纳米载体性能以提高药物递送效率这一核心思想. 详细回顾了基本设想的提出、验证到体内效果的系统性评估,以及基于这一思想发展的多种药物递送策略,从多个层面解决体内药物输送面临的难题,并对此领域未来的发展进行了展望.
Over the past decades
nanotechnology has been intensively investigated for application in drug delivery
cancer treatment
and cancer diagnostics. Treatment with cancer nanomedicines have shown many benefits in improving clinical translation potential and drug biodistribution
reducing side effects and improving the life quality of patients
compared with that by small-molecule anticancer therapeutics. However
a series of complex biological barriers
including the blood barriers
tumor microenvironment barriers
intratumor cell barriers considerably prevent a nanomedicine from reaching its targets in a sufficient concentration and thus severely limit its therapeutic benefits. A feasible strategy is to formulate the nanocarriers in response to microenvironment and to tune their properties to adapt to each individual environment for robust and effective delivery. In this review
we systemically summarize the principles of nanoparticle design for overcoming multiple biological barriers in drug delivery
and conclude the ideal properties of nanomedicine and its biological effects in the microenvironment of each stage
such as blood
extracellular region and intratumor cell in drug delivery. This can guide the development of intelligent nanomedicine which can overcome the drug delivery barriers by making subtle response to the changes of physiological signal. In this review
we highlight some typical strategies we developed in recent 10 years
especially the nanocarriers response to the acidic extracellular environment
to improve the delivery efficiency after systemic administration
including surface charge reversal
surface PEG detachment
particle size transition and ligand reactivation. Finally
the opportunities and challenges in tumor responsive nanomedicines are also disscussed.
纳米药物pH响应性药物载体与递送肿瘤微环境
NanomedicinepH-responsiveDrug deliveryTumor microenvironment
Shi J, Kantoff P W, Wooster R, Farokhzad O C . Nat Rev Cancer , 2017 . 17 ( 1 ): 20 - 37 . DOI:10.1038/nrc.2016.108http://doi.org/10.1038/nrc.2016.108 .
Tran S, DeGiovanni P J, Piel B, Rai P . Clin Transl Med , 2017 . 6 ( 1 ): 44 DOI:10.1186/s40169-017-0175-0http://doi.org/10.1186/s40169-017-0175-0 .
Maeda H . J Control Release , 2012 . 164 ( 2 ): 138 - 144 . DOI:10.1016/j.jconrel.2012.04.038http://doi.org/10.1016/j.jconrel.2012.04.038 .
Nichols J W, Bae Y H . J Control Release , 2014 . 190 451 - 464 . DOI:10.1016/j.jconrel.2014.03.057http://doi.org/10.1016/j.jconrel.2014.03.057 .
Caster J M, Patel A N, Zhang T, Wang A . Wiley Interdiscip Rev Nanomed Nanobiotechnol , 2017 . 9 ( 1 ): e1416 DOI:10.1002/wnan.1416http://doi.org/10.1002/wnan.1416 .
Min Y Z, Caster J M, Eblan M J, Wang A Z . Chem Rev , 2015 . 115 ( 19 ): 11147 - 11190 . DOI:10.1021/acs.chemrev.5b00116http://doi.org/10.1021/acs.chemrev.5b00116 .
Satalkar P, Elger B S, Hunziker P, Shaw D . Nanomedicine: NBM , 2016 . 12 ( 4 ): 893 - 900 . DOI:10.1016/j.nano.2015.12.376http://doi.org/10.1016/j.nano.2015.12.376 .
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J . J Control Release , 2015 . 200 138 - 157 . DOI:10.1016/j.jconrel.2014.12.030http://doi.org/10.1016/j.jconrel.2014.12.030 .
Ernsting M J, Murakami M, Roy A, Li S D . J Control Release , 2013 . 172 ( 3 ): 782 - 794 . DOI:10.1016/j.jconrel.2013.09.013http://doi.org/10.1016/j.jconrel.2013.09.013 .
Walkey C D, Olsen J B, Guo H, Emili A, Chan W C . J Am Chem Soc , 2012 . 134 ( 4 ): 2139 - 2147 . DOI:10.1021/ja2084338http://doi.org/10.1021/ja2084338 .
Veronese F M, Pasut G . Drug Discov Today , 2005 . 10 ( 21 ): 1451 - 1458 . DOI:10.1016/S1359-6446(05)03575-0http://doi.org/10.1016/S1359-6446(05)03575-0 .
Xiao K, Li Y, Luo J, Lee J S, Xiao W, Gonik A M, Agarwal R G, Lam K S . Biomaterials , 2011 . 32 ( 13 ): 3435 - 3446 . DOI:10.1016/j.biomaterials.2011.01.021http://doi.org/10.1016/j.biomaterials.2011.01.021 .
Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano M R, Miyazono K, Uesaka M, Nishiyama N, Kataoka K . Nat Nanotechnol , 2011 . 6 ( 12 ): 815 - 823 . DOI:10.1038/nnano.2011.166http://doi.org/10.1038/nnano.2011.166 .
Blanco E, Shen H, Ferrari M . Nat Biotechnol , 2015 . 33 ( 9 ): 941 - 951 . DOI:10.1038/nbt.3330http://doi.org/10.1038/nbt.3330 .
Sriraman S K, Aryasomayajula B, Torchilin V P . Tissue Barriers , 2014 . 2 e29528 DOI:10.4161/tisb.29528http://doi.org/10.4161/tisb.29528 .
Du J Z, Mao C Q, Yuan Y Y, Yang X Z, Wang J . Biotechnol Adv , 2014 . 32 ( 4 ): 789 - 803 . DOI:10.1016/j.biotechadv.2013.08.002http://doi.org/10.1016/j.biotechadv.2013.08.002 .
Sun Q, Zhou Z, Qiu N, Shen Y . Adv Mater , 2017 . 29 ( 14 ): 1606628 DOI:10.1002/adma.v29.14http://doi.org/10.1002/adma.v29.14 .
Meng F, Hennink W E, Zhong Z . Biomaterials , 2009 . 30 ( 12 ): 2180 - 2198 . DOI:10.1016/j.biomaterials.2009.01.026http://doi.org/10.1016/j.biomaterials.2009.01.026 .
Miyata K, Kakizawa Y, Nishiyama N, Harada A, Yamasaki Y, Koyama H, Kataoka K . J Am Chem Soc , 2004 . 126 ( 8 ): 2355 - 2361 . DOI:10.1021/ja0379666http://doi.org/10.1021/ja0379666 .
Mo R, Jiang T, DiSanto R, Tai W, Gu Z . Nat Commun , 2014 . 5 3364 DOI:10.1038/ncomms4364http://doi.org/10.1038/ncomms4364 .
Xu P, Van Kirk E A, Zhan Y, Murdoch W J, Radosz M, Shen Y . Angew Chem Int Ed , 2007 . 46 ( 26 ): 4999 - 5002 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773 .
Lee Y, Fukushima S, Bae Y, Hiki S, Ishii T, Kataoka K . J Am Chem Soc , 2007 . 129 ( 17 ): 5362 - 5363 . DOI:10.1021/ja071090bhttp://doi.org/10.1021/ja071090b .
Kratz F, Drevs J, Bing G, Stockmar C, Scheuermann K, Lazar P, Unger C . Bioorg Med Chem Lett , 2001 . 11 ( 15 ): 2001 - 2006 . DOI:10.1016/S0960-894X(01)00354-7http://doi.org/10.1016/S0960-894X(01)00354-7 .
Zhu L, Wang T, Perche F, Taigind A, Torchilin V P . Proc Natl Acad Sci USA , 2013 . 110 ( 42 ): 17047 - 17052 . DOI:10.1073/pnas.1304987110http://doi.org/10.1073/pnas.1304987110 .
Vander Heiden M G, Cantley L C, Thompson C B . Science , 2009 . 324 ( 5930 ): 1029 - 1033 . DOI:10.1126/science.1160809http://doi.org/10.1126/science.1160809 .
Tannock I F, Rotin D . Cancer Res , 1989 . 49 ( 16 ): 4373 - 4384.
Gillies R J, Raghunand N, Garcia-Martin M L, Gatenby R A . IEEE Eng Med Biol Mag , 2004 . 23 ( 5 ): 57 - 64 . DOI:10.1109/MEMB.2004.1360409http://doi.org/10.1109/MEMB.2004.1360409 .
Du J Z, Li H J, Wang J . Acc Chem Res , 2018 . 51 ( 11 ): 2848 - 2856 . DOI:10.1021/acs.accounts.8b00195http://doi.org/10.1021/acs.accounts.8b00195 .
Lancaster A J K P W . J Chem Soc, Perkin Trans 2 , 1972 . 0 1206 - 1214.
Kang S, Kim Y, Song Y, Choi J U, Park E, Choi W, Park J, Lee Y . Bioorg Med Chem Lett , 2014 . 24 ( 10 ): 2364 - 2367 . DOI:10.1016/j.bmcl.2014.03.057http://doi.org/10.1016/j.bmcl.2014.03.057 .
Du J Z, Sun T M, Song W J, Wu J, Wang J . Angew Chem Int Ed , 2010 . 49 ( 21 ): 3621 - 3626 . DOI:10.1002/anie.200907210http://doi.org/10.1002/anie.200907210 .
Du J Z, Du X J, Mao C Q, Wang J . J Am Chem Soc , 2011 . 133 ( 44 ): 17560 - 17563 . DOI:10.1021/ja207150nhttp://doi.org/10.1021/ja207150n .
Wang C, Cheng L, Liu Y M, Wang X J, Ma X X, Deng Z Y, Li Y G, Liu Z . Adv Funct Mater , 2013 . 23 ( 24 ): 3077 - 3086 . DOI:10.1002/adfm.v23.24http://doi.org/10.1002/adfm.v23.24 .
Chen W, Achazi K, Schade B, Haag R . J Control Release , 2015 . 205 15 - 24 . DOI:10.1016/j.jconrel.2014.11.012http://doi.org/10.1016/j.jconrel.2014.11.012 .
Zhou Q, Hou Y L, Zhang L, Wang J L, Qiao Y B, Guo S Y, Fan L, Yang T H, Zhu L, Wu H . Theranostics , 2017 . 7 ( 7 ): 1806 - 1819 . DOI:10.7150/thno.18607http://doi.org/10.7150/thno.18607 .
Yang X Z, Du J Z, Dou S, Mao C Q, Long H Y, Wang J . ACS Nano , 2012 . 6 ( 1 ): 771 - 781 . DOI:10.1021/nn204240bhttp://doi.org/10.1021/nn204240b .
Yang X Z, Du X J, Liu Y, Zhu Y H, Liu Y Z, Li Y P, Wang J . Adv Mater , 2014 . 26 ( 6 ): 931 - 936 . DOI:10.1002/adma.v26.6http://doi.org/10.1002/adma.v26.6 .
Sun C Y, Liu Y, Du J Z, Cao Z T, Xu C F, Wang J . Angew Chem Int Ed , 2016 . 55 ( 3 ): 1010 - 1014 . DOI:10.1002/anie.201509507http://doi.org/10.1002/anie.201509507 .
Sun C Y, Shen S, Xu C F, Li H J, Liu Y, Cao Z T, Yang X Z, Xia J X, Wang J . J Am Chem Soc , 2015 . 137 ( 48 ): 15217 - 15224 . DOI:10.1021/jacs.5b09602http://doi.org/10.1021/jacs.5b09602 .
Li H J, Du J Z, Du X J, Xu C F, Sun C Y, Wang H X, Cao Z T, Yang X Z, Zhu Y H, Nie S M, Wang J . Proc Natl Acad Sci USA , 2016 . 113 ( 15 ): 4164 - 4169 . DOI:10.1073/pnas.1522080113http://doi.org/10.1073/pnas.1522080113 .
Li D D, Ma Y C, Du J Z, Tao W, Du X J, Yang X Z, Wang J . Nano Lett , 2017 . 17 ( 5 ): 2871 - 2878 . DOI:10.1021/acs.nanolett.6b05396http://doi.org/10.1021/acs.nanolett.6b05396 .
Cheng H, Zhu J Y, Xu X D, Qiu W X, Lei Q, Han K, Cheng Y J, Zhang X Z . ACS Appl Mater Interfaces , 2015 . 7 ( 29 ): 16061 - 16069 . DOI:10.1021/acsami.5b04517http://doi.org/10.1021/acsami.5b04517 .
Li L, Yang Q Q, Zhou Z, Zhong J J, Huang Y . Biomaterials , 2014 . 35 ( 19 ): 5171 - 5187 . DOI:10.1016/j.biomaterials.2014.03.027http://doi.org/10.1016/j.biomaterials.2014.03.027 .
0
浏览量
25
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构