浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
E-mail: wgliu@tju.edu.cn
纸质出版日期:2019-6,
网络出版日期:2019-3-5,
收稿日期:2018-12-18,
修回日期:2019-1-24,
扫 描 看 全 文
崔春燕, 陈薪羽, 刘博, 武腾玲, 范川川, 刘文广. 一种高强度速黏纳米杂化水凝胶“创可贴”[J]. 高分子学报, 2019,50(6):613-622.
Chun-yan Cui, Xin-yu Chen, Bo Liu, Teng-ling Wu, Chuan-chuan Fan, Wen-guang Liu. A High Strength Instant Adhesive Nano-hybrid Hydrogel as First-aid Bandage[J]. Acta Polymerica Sinica, 2019,50(6):613-622.
崔春燕, 陈薪羽, 刘博, 武腾玲, 范川川, 刘文广. 一种高强度速黏纳米杂化水凝胶“创可贴”[J]. 高分子学报, 2019,50(6):613-622. DOI: 10.11777/j.issn1000-3304.2019.18270.
Chun-yan Cui, Xin-yu Chen, Bo Liu, Teng-ling Wu, Chuan-chuan Fan, Wen-guang Liu. A High Strength Instant Adhesive Nano-hybrid Hydrogel as First-aid Bandage[J]. Acta Polymerica Sinica, 2019,50(6):613-622. DOI: 10.11777/j.issn1000-3304.2019.18270.
报道了一种制备具有高强度、高黏附性和良好生物相容性的黏合水凝胶的极其简便的方法. 将
N
-丙烯酰-2-氨基乙酸(ACG)水溶液与纳米生物活性玻璃(BG)混合,紫外光引发自由基聚合即可快速制备PACG-BG纳米复合水凝胶. 在该水凝胶体系中PACG分子链之间形成的氢键、PACG末端的羧基与BG中的金属离子形成的离子络合以及PACG分子链与BG纳米粒子之间发生的物理吸附作用共同构成了网络的多重物理交联,由此显著提高了凝胶的强度. 通过调节凝胶体系中ACG和BG的含量赋予了水凝胶可调节的黏附性、机械性能以及室温自修复特性. 利用搭接剪切拉伸的方式对水凝胶的黏附性能进行测试,结果显示当水凝胶中ACG的含量为25 wt%,BG占ACG含量为6 wt%时,水凝胶的表面黏附能和内聚能可达平衡,其对猪皮、铁片和陶瓷的瞬时最大黏附强度分别为120、142和125 kPa. 同时,水凝胶最高拉伸强度可达0.9 MPa,撕裂能可达1500 J/m
2
. 动物体内埋植结果显示水凝胶具有良好的生物相容性. 鉴于水凝胶对生物软组织有优异的黏附性能,对其进行了体外修补胃穿孔的模拟实验,结果表明,水凝胶可以牢固地黏附在胃的穿孔处,防止模拟胃液的外泄.
In this work
a very simple method for preparing a mechanically strong
highly adhesive
and biocompatible hydrogel was reported. The aqueous solution of
N
-acryloyl-2-aminoacetic acid (ACG) and nano-bioactive glass (BG) was mixed
followed by UV light irradiation to initiate polymerization for preparing the PACG-BG nano-hybrid hydrogels rapidly. The intermolecular hydrogen bonds from PACG chains
coordination between PACG-end carboxyls and metal ions of BG
as well as PACG-BG physical interaction collectively formed multiple physical crosslinks
were contributed to the increased mechanical strengths. The studies of PACG-BG hydrogels demonstrated that tunable mechanical properties
adhesion abilities
and room temperature self-healing ability could be adjusted by changing the contents of ACG and BG. The adhesion strengths of the hydrogels were tested by tension loading in lap-shear mode. The results indicated that at 25 wt% ACG and 6 wt% BG (relative to ACG)
the hydrogels could achieve a balance between surface adhesion and cohesion energies; in this case
the maximum instant adhesion strengths toward pig’s skin
ion sheet
and ceramic were measured to be 120
142
and 125 kPa
respectively
and the adhesion strengths of hydrogels toward pig skin
ion sheet
and ceramics was presumably originated from the enrichment of PACG chains to the substrates facilitated by the BG nanoparticles. This allowed more carboxyl groups on the hydrogel surface to form hydrogen bonds
ionic coordination
and dipole interactions with the adherends
consequently leading to the enhanced adhesion to these materials. Intriguingly
the highest tensile strength of the hydrogel was as high as 0.9 MPa
fracture energy could reach 1500 J m
−2
and self-healing efficiency could reach 100% after 12 h at room temperature without manual intervention. The outcomes of
in vivo
implantation showed that the hydrogel possessed better biocompatibility. In light of its robust adhesion to biological soft tissues
the hydrogel was used for
in vitro
adhering and mending the animal’s gastric perforation. The results revealed that the hydrogel could adhere firmly to the perforated stomach
thus preventing leakage of gastric fluid. This novel organic-inorganic hybrid hydrogel holds promising potential as a biomedical first-aid bandage.
有机-无机杂化水凝胶高强黏附“创可贴”
Organic-inorganic hybridHydrogelHigh strengthAdhesionFirst-aid bandage
Anderson C A, Jones A R, Briggs E M, Novitsky E J, Kuykendall D W, Sottos N R, Zimmerman S C . J Am Chem Soc , 2013 . 135 7288 - 7295 . DOI:10.1021/ja4005283http://doi.org/10.1021/ja4005283 .
Bu Y Z, Zhang L C, Liu J H, Zhang L H, Li T T, Shen H, Wang X, Yang F, Tang P F, Wu D C . ACS Appl Mater Interfaces , 2016 . 8 12674 - 12683 . DOI:10.1021/acsami.6b03235http://doi.org/10.1021/acsami.6b03235 .
Sun L, Huang Y, Bian Z, Petrosino J, Fan Z, Wang Y, Park K H, Yue T, Schmidt M, Galster S . ACS Appl Mater Interfaces , 2016 . 8 2423 - 2434 . DOI:10.1021/acsami.5b11811http://doi.org/10.1021/acsami.5b11811 .
Jeon E Y, Wang B H, Yang Y J, Kim B J, Choi B H, Jung G Y, Cha H J . Biomaterials , 2015 . 67 11 - 19 . DOI:10.1016/j.biomaterials.2015.07.014http://doi.org/10.1016/j.biomaterials.2015.07.014 .
Zhao Q, Lee D W, Ahn B K, Seo S, Kaufman Y, Israelachvili J N, Waite J H . Nat Mater , 2016 . 15 407 - 412 . DOI:10.1038/nmat4539http://doi.org/10.1038/nmat4539 .
Sedo J, Poseu J S, Busque F, Molina D R . Adv Mater , 2013 . 25 653 - 658 . DOI:10.1002/adma.201202343http://doi.org/10.1002/adma.201202343 .
Walte J H . Integr Comp Biol , 2002 . 42 1172 - 1180 . DOI:10.1093/icb/42.6.1172http://doi.org/10.1093/icb/42.6.1172 .
Shin M, Park S G, Oh B C, Kim K, Jo S, Lee M S, Song S, Hong S H, Shin E C, Kim K S, Kang S W, Lee H . Nat Mater , 2017 . 3 147 - 154.
Wang R, Li J Z, Chen W, Xu T T, Yun S F, Xu Z, Xu Z Q, Sato T, Chi B, Xu H . Adv Funct Mater , 2017 . 27 1604894 DOI:10.1002/adfm.v27.8http://doi.org/10.1002/adfm.v27.8 .
Shin J, Lee J S, Lee C, Park H J, Yang K, Jin Y, Ryu J H, Hong K S, Moon S H, Chung H M, Yang H S, Um S H, Oh J W, Kim D I, Lee H, Cho S W . Adv Funct Mater , 2015 . 25 3814 - 3824 . DOI:10.1002/adfm.v25.25http://doi.org/10.1002/adfm.v25.25 .
Zhang H, Bre L, Zhao T Y, Newland B, Costa M D, Wang W X . J Mater Chem B , 2014 . 2 4067 - 4071.
Bouten J M, Zonjee M, Bender J, Yauw T K, Goor H V, Hoogenboom R . Prog Polym Sci , 2014 . 39 1375 - 1405 . DOI:10.1016/j.progpolymsci.2014.02.001http://doi.org/10.1016/j.progpolymsci.2014.02.001 .
Burkett J R, Hight L M, Kenny P, Wilker J J . J Am Chem Soc , 2010 . 132 12531 - 12533 . DOI:10.1021/ja104996yhttp://doi.org/10.1021/ja104996y .
Walker G J . Mar Biol , 1972 . 52 429 - 435.
Szilagyi I, Trefalt G, Tiraferri A, Maroni P, Borkovec M . Soft Matter , 2014 . 10 2479 - 2502 . DOI:10.1039/c3sm52132jhttp://doi.org/10.1039/c3sm52132j .
Cui C Y, Wu T L, Gao F, Fan C C, Xu Z Y, Wang H B, Liu B, Liu W G . Adv Funct Mater , 2018 . 28 1804925 DOI:10.1002/adfm.201804925http://doi.org/10.1002/adfm.201804925 .
Li A, Jia Y F, Sun S T, Yu Y S, Minsky B, Colfen H, Guo X H . ACS Appl Mater Interfaces , 2018 . 28 10471 - 10479.
Meredith H J, Jenkins C L, Wilker J J . Adv Funct Mater , 2014 . 24 3259 - 3267 . DOI:10.1002/adfm.201303536http://doi.org/10.1002/adfm.201303536 .
Nicola R, Kamada J, Wassen A V, Matyjaszewski K . Macromolecules , 2010 . 43 4355 - 4361 . DOI:10.1021/ma100378rhttp://doi.org/10.1021/ma100378r .
Montarnal D, Capelot M, Tournilhac F, Leibler L . Science , 2011 . 334 965 - 967 . DOI:10.1126/science.1212648http://doi.org/10.1126/science.1212648 .
Rose S, Prevoteau A, Elziere P, Hourdet D, Marcellan A, Leibler L . Nature , 2014 . 505 382 - 385 . DOI:10.1038/nature12806http://doi.org/10.1038/nature12806 .
Gao F, Zhang Y Y, Li Y M, Xu B, Cao Z Q, Liu W G . ACS Appl Mater Interfaces , 2016 . 8 8956 - 8966 . DOI:10.1021/acsami.6b00912http://doi.org/10.1021/acsami.6b00912 .
Yang Weizhong(杨为中), Zhou Dali(周大利), Yin Guangfu(尹光福), Zheng Changqiong(郑昌琼) . 生物医学工程学杂志 , J Biomed Eng , 2003 . 20 541 - 545 . DOI:10.3321/j.issn:1001-5515.2003.03.043http://doi.org/10.3321/j.issn:1001-5515.2003.03.043 .
Han Y J, Bai T, Liu W G . Sci Rep , 2014 . 4 5815 - 5821.
Zhang Y Y, Li Y M, Liu W G . Adv Funct Mater , 2015 . 25 471 - 480 . DOI:10.1002/adfm.201401989http://doi.org/10.1002/adfm.201401989 .
0
浏览量
75
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构