浏览全部资源
扫码关注微信
北京化工大学 有机无机复合材料国家重点实验室 碳纤维及功能高分子教育部重点实验室 北京 100029
E-mail: ningny@mail.buct.edu.cn
E-mail: tianm@mail.buct.edu.cn
纸质出版日期:2019-5,
网络出版日期:2019-3-18,
收稿日期:2018-12-29,
修回日期:2019-1-30,
扫 描 看 全 文
王怡, 冯展彬, 左洪礼, 于冰, 宁南英, 田明, 张立群. 基于Diels-Alder反应的热可逆高导电硅橡胶/碳管复合材料的制备[J]. 高分子学报, 2019,50(5):485-495.
Yi Wang, Zhan-bin Feng, Hong-li Zuo, Bing Yu, Nan-ying Ning, Ming Tian, Li-qun Zhang. Preparation of Thermally Reversible Silicone Rubber/Carbon Nanotubes Composite with High Electrical Conductivity Based on Diels-Alder Reaction[J]. Acta Polymerica Sinica, 2019,50(5):485-495.
王怡, 冯展彬, 左洪礼, 于冰, 宁南英, 田明, 张立群. 基于Diels-Alder反应的热可逆高导电硅橡胶/碳管复合材料的制备[J]. 高分子学报, 2019,50(5):485-495. DOI: 10.11777/j.issn1000-3304.2019.18280.
Yi Wang, Zhan-bin Feng, Hong-li Zuo, Bing Yu, Nan-ying Ning, Ming Tian, Li-qun Zhang. Preparation of Thermally Reversible Silicone Rubber/Carbon Nanotubes Composite with High Electrical Conductivity Based on Diels-Alder Reaction[J]. Acta Polymerica Sinica, 2019,50(5):485-495. DOI: 10.11777/j.issn1000-3304.2019.18280.
使用碳纳米管(CNTs)作为亲二烯体,制备了接枝呋喃官能团的硅橡胶(SiR-Fu)作为二烯体,二者进行Diels-Alder反应,在CNTs与SiR-Fu基体之间构建了可逆共价交联网络,制备了一种同时具有良好的界面粘结、较好的力学强度、高导电性和较好热可逆性质的导电硅橡胶(SiR)复合材料. 其中,CNTs既作为增强填料和导电填料,又能与SiR主链上的呋喃官能团发生Diels-Alder反应而形成动态共价键,使得复合材料具有热可逆性、可回收再利用性且能提高复合材料的界面粘结和力学强度. 较之纯SiR,CNTs含量为10 wt%的复合材料的电导率从2.5 × 10
−14
S/cm提高到0.9 S/cm;拉伸强度从0.2 MPa提高到2.3 MPa;对样品进行二次模压成型之后,其拉伸强度回复率为77%,断裂伸长率回复率为88%,电导率回复率为86%.
An emerging and crucial type of high-value-added functional materials
conductive elastomer composites (CEC) have found extensive applications in the fields of military and civil electromagnetic shielding/protection by virtue of their excellent electromagnetic shielding function and environmental sealing performance. However
practical uses of CEC materials can be largely compromised by such disadvantages as difficult rubber recovery
poor interfacial adhesion
and costly conductive fillers. In this study
methyl vinyl silicone rubber (SiR) with high vinyl content (20%
30% and 50%) was firstly synthesized through an anionic ring-opening reaction
and as-prepared SiR was grafted with furan functional groups
via
the thiol-ene click chemical reaction to afford furan-grafted SiR (SiR-Fu). SiR-Fu/CNTs composites were then prepared by solution blending of SiR-Fu and carbon nanotubes (CNTs)
during which Diels-Alder reaction occurred with SiR-Fu as the diene and CNTs as the dienophiles
giving rise to reversible covalent cross-linking networks throughout the resulting composites. SEM images showed that diameters of most CNTs in SiR-Fu/5wt% CNTs and SiR-Fu/10wt% CNTs composites were significantly larger than those of the raw CNTs due to a SiR layer coated on the nanotube surface
indication of the DA reaction between CNTs and SiR-Fu. However
CNTs tended to agglomerate when being further increased to 20 wt% and some of them showed little change in diameter as compared with the initial values
so that no DA reaction took place in that case. In addition
the gel content of SiR-Fu/5wt% CNTs and SiR-Fu/10wt% CNTs composites was 73% and 90%
respectively
suggesting an enhanced degree of DA reaction at increasing CNTs content within a certain range
while it decreased to 24.5% at 20 wt% CNTs addition for the reduced degree of DA reaction caused by CNTs agglomeration. Therefore
composites with 5 wt% and 10 wt% CNTs showed better interfacial adhesion
higher mechanical strength
greater electrical conductivity
and favorable thermal reversibility. Particularly
the electrical conductivity and tensile strength of SiR-Fu/10wt% CNTs composite reached 0.9 S/cm and 2.3 MPa
respectively
much improved than those of the neat SiR (2.5 × 10
−14
S/cm and 0.2 MPa). Moreover
the initial tensile strength
elongation at break
and electrical conductivity could be retained at 77%
88%
and 86%
respectively
after composite reprocessing.
导电橡胶复合材料硅橡胶Diels-Alder反应热可逆性碳纳米管
Conductive elastomer compositeSilicone rubberDiels-Alder reactionThermo-reversibilityCarbon nanotubes
Stoyanov H, Kollosche M, Risse S, Wache R, Kofod G . Adv Mater , 2013 . 25 ( 4 ): 578 - 583 . DOI:10.1002/adma.201202728http://doi.org/10.1002/adma.201202728 .
Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I . Adv Mater , 2014 . 26 ( 21 ): 3451 - 3458 . DOI:10.1002/adma.v26.21http://doi.org/10.1002/adma.v26.21 .
Polgar L M, van Duin M, Broekhuis A A, Picchioni F . Macromolecules , 2015 . 48 ( 19 ): 7096 - 7105 . DOI:10.1021/acs.macromol.5b01422http://doi.org/10.1021/acs.macromol.5b01422 .
Polgar L, Hagting E, Koek W J, Picchioni F, van Duin M . Polymers , 2017 . 9 ( 3 ): 81 .
Zhang H, Cai C, Liu W, Li D D, Zhang J W, Zhao N, Xu J . Sci Rep , 2017 . 7 ( 1 ): 11833 DOI:10.1038/s41598-017-11485-6http://doi.org/10.1038/s41598-017-11485-6 .
Zhang B L, Zhang P, Zhang H Z, Y an, Casey Y, Zheng Z J, Wu B, Yu, Y . Macromol Rapid Commun , 2017 . 38 ( 15 ): 1700110 DOI:10.1002/marc.v38.15http://doi.org/10.1002/marc.v38.15 .
Amamoto Y, Kikuchi M, Masunaga H, Sasaki S, Otsuka H, Takahara A . Macromolecules , 2010 . 43 ( 4 ): 1785 - 1791 . DOI:10.1021/ma902413fhttp://doi.org/10.1021/ma902413f .
. 高分子学报 , Acta Polymerica Sinica , 2018 . ( 3 ): 395 - 401.
Diels O, Alder K . Justus Liebigs Ann Chem , 1928 . 460 ( 1 ): 98 - 122 . DOI:10.1002/(ISSN)1099-0690http://doi.org/10.1002/(ISSN)1099-0690 .
Polgar M L, Hagting E, Raffa P, Mauri M, Simonutti R, Picchioni F, Duin M . Macromolecules , 2017 . 50 ( 22 ): 8955 - 8964 . DOI:10.1021/acs.macromol.7b01541http://doi.org/10.1021/acs.macromol.7b01541 .
Trovatti E, Lacerda T M, Carvalho A J, Gandini A . Adv Mater , 2015 . 27 ( 13 ): 2242 - 2245 . DOI:10.1002/adma.201405801http://doi.org/10.1002/adma.201405801 .
Zhao J, Xu R, Luo G X, Wu J, Xia H S . J Mater Chem B , 2016 . 4 ( 5 ): 982 - 989 . DOI:10.1039/C5TB02036Khttp://doi.org/10.1039/C5TB02036K .
. 高分子学报 , Acta Polymerica Sinica , 2017 . ( 7 ): 1130 - 1140.
Roy S, Das T, Zhang L, Li Y, Ming Y, Ting S, Hu X, Yue C Y . Polymer , 2015 . 58 153 - 161 . DOI:10.1016/j.polymer.2014.12.032http://doi.org/10.1016/j.polymer.2014.12.032 .
Xue S M, Xu Z L, Tang Y J, Ji C H . ACS Appl Mater Interfaces , 2016 . 8 ( 29 ): 19135 - 44 . DOI:10.1021/acsami.6b05545http://doi.org/10.1021/acsami.6b05545 .
Dumitru A, Mamlouk M, Scott K . Electrochi Acta , 2014 . 135 428 - 438 . DOI:10.1016/j.electacta.2014.04.123http://doi.org/10.1016/j.electacta.2014.04.123 .
Miller S G, Williams T S, Baker J S, Sola F, Lebron-Colon M, McCorkle L S, Wilmoth N G, Gaier J, Chen M, Meador M A . ACS Appl Mater Interfaces , 2014 . 6 ( 9 ): 6120 - 6126 . DOI:10.1021/am4058277http://doi.org/10.1021/am4058277 .
Araya-Hermosilla R, Pucci A, Raffa P, Santosa D, Pescarmona P P, Gengler N Y R, Rudolf P, Moreno-Villoslada I, Picchioni F . Polymers , 2018 . 10 ( 10 ): 1076 DOI:10.3390/polym10101076http://doi.org/10.3390/polym10101076 .
Li Y, Osuna S, Garcia-Borras M, Qi X, Liu S, Houk K N, Lan Y . Chem Eur J , 2016 . 22 ( 36 ): 12819 - 24 . DOI:10.1002/chem.v22.36http://doi.org/10.1002/chem.v22.36 .
Mata D, Amaral M, Fernandes A J, Colaco B, Gama A, Paiva M C, Gomes P S, Silva R F, Fernandes M H . Nanoscale , 2015 . 7 ( 20 ): 9238 - 9251 . DOI:10.1039/C5NR01829Chttp://doi.org/10.1039/C5NR01829C .
Willocq B, Lemaur V, Garah E M, Ciesielski A, Samori P, Raquez J M, Dubois P, Cornil J . Chem Commun , 2016 . 52 ( 48 ): 7608 - 7611 . DOI:10.1039/C6CC01427Ehttp://doi.org/10.1039/C6CC01427E .
Willocq B, Bose R K, Khelifa F, Garcia S J, Dubois P, Raquez J M . J Mater Chem A , 2016 . 4 ( 11 ): 4089 - 4097 . DOI:10.1039/C5TA09793Bhttp://doi.org/10.1039/C5TA09793B .
Zhang W, Zhou Z, Li Q, Chen G X . Ind Eng Chem Res , 2014 . 53 ( 16 ): 6699 - 6707 . DOI:10.1021/ie404204ghttp://doi.org/10.1021/ie404204g .
Lowe A B . Polym Chem , 2010 . 1 ( 1 ): 17 - 36 . DOI:10.1039/B9PY00216Bhttp://doi.org/10.1039/B9PY00216B .
Schenzel A M, Klein C, Rist K, Moszner N, Barner-Kowollik C . Adv Sci , 2016 . 3 ( 3 ): 1500361 DOI:10.1002/advs.201500361http://doi.org/10.1002/advs.201500361 .
Inglis A J, Sinnwell S, Stenzel M H, Barner-Kowollik C . Angew Chem Int Ed , 2009 . 48 ( 13 ): 2411 - 2414 . DOI:10.1002/anie.200805993http://doi.org/10.1002/anie.200805993 .
Gacal B, Durmaz H, Tasdelen M A, Hizal G, Tunca U, Yagci Y, Demirel A L . Macromolecules , 2006 . 39 ( 16 ): 5330 - 5336 . DOI:10.1021/ma060690chttp://doi.org/10.1021/ma060690c .
Xiong X Q, Chen Y M . Eur Polym J , 2012 . 48 ( 3 ): 569 - 579 . DOI:10.1016/j.eurpolymj.2011.12.010http://doi.org/10.1016/j.eurpolymj.2011.12.010 .
Xiong X Q, Xu Y H . Polym Bull , 2010 . 65 ( 5 ): 455 - 463 . DOI:10.1007/s00289-009-0221-1http://doi.org/10.1007/s00289-009-0221-1 .
Durmaz H, Colakoglu B, Tunca U, Gurkan H . J Polym Sci, Part A: Polym Chem , 2006 . 44 ( 5 ): 1667 - 1675 . DOI:10.1002/pola.21275http://doi.org/10.1002/pola.21275 .
Yusuke I, Hideaki I, Kensuke N, Yoshiki C . Macromolecules , 2000 . 33 ( 12 ): 4343 - 4346 . DOI:10.1021/ma991899bhttp://doi.org/10.1021/ma991899b .
Chen X, Dam M A, Ono K, Ajit M, Hongbin S, Steven R N, Kevin S, Fred W . Science , 2002 . 295 ( 5560 ): 1698 - 1702 . DOI:10.1126/science.1065879http://doi.org/10.1126/science.1065879 .
Chen X X, Fred W, Ajit K M, Shen H B, Steven R N . Macromolecules , 2003 . 36 ( 6 ): 1082 - 1807.
Michael L S, Dominic V M, David R W, Thomas Z, James R M . Macromolecules , 2007 . 40 ( 4 ): 818 - 823 . DOI:10.1021/ma062093whttp://doi.org/10.1021/ma062093w .
0
浏览量
48
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构