浏览全部资源
扫码关注微信
1.中国科学院宁波材料科学与技术研究所 宁波 315201
2.上海大学材料科学与工程学院 上海 200444
E-mail: zhangjiawei@nimte.ac.cn Jia-wei Zhang, E-mail: zhangjiawei@nimte.ac.cn
E-mail: tao.chen@nimte.ac.cn Tao Chen, E-mail: tao.chen@nimte.ac.cn
纸质出版日期:2019-5,
网络出版日期:2019-2-25,
收稿日期:2018-12-29,
修回日期:2019-1-18,
扫 描 看 全 文
吴宝意, 徐亚文, 乐晓霞, 简钰坤, 路伟, 张佳玮, 陈涛. 基于动态硼酸酯键的水凝胶的模块化组装和智能形变[J]. 高分子学报, 2019,50(5):496-504.
Bao-yi Wu, Ya-wen Xu, Xiao-xia Le, Yu-kun Jian, Wei Lu, Jia-wei Zhang, Tao Chen. Smart Hydrogel Actuators Assembled
吴宝意, 徐亚文, 乐晓霞, 简钰坤, 路伟, 张佳玮, 陈涛. 基于动态硼酸酯键的水凝胶的模块化组装和智能形变[J]. 高分子学报, 2019,50(5):496-504. DOI: 10.11777/j.issn1000-3304.2019.18281.
Bao-yi Wu, Ya-wen Xu, Xiao-xia Le, Yu-kun Jian, Wei Lu, Jia-wei Zhang, Tao Chen. Smart Hydrogel Actuators Assembled
将苯硼酸基团引入水凝胶网络中,以聚乙烯醇(PVA)为胶水,在碱性条件下通过水凝胶表面与PVA形成动态硼酸酯键,实现了含有苯硼酸基团的水凝胶的模块化组装. 通过显微红外表征,证明了在2块水凝胶界面形成了硼酸酯键,并且组装后的水凝胶黏合强度大于水凝胶本体. 随后引入聚阳离子单体甲基丙烯酰氧乙基三甲基氯化铵(METAC)以及
N
-异丙基丙烯酰胺(NIPAm)实现了双层水凝胶的离子与温度双重刺激响应,并且通过胶水黏合位置的选择,实现了二维与三维复杂形变. 最后通过刺激响应的双重正向叠加制备了抓取力可调的软机械夹具.
The reversible mechanical deformations of smart hydrogel actuators
such as swelling/shrinking and bending
under various external stimuli have earned them mounting attention in the application arenas of biomimetic actuators
soft robots
etc
. Hydrogel actuators were initailly designed with isotropic structures for a simple swelling/shrinking triggered by external stimuli
while the research progress afterwards focuses more on the design of anisotropic structures that aims at complex shape deformation. However
the determined structure of traditional anisotropic hydrogel actuators typically led to fixed shape deformation direction and degree
which limited them from meeting the actual needs. To this end
we got inspired by the assembly of building blocks and integrated boronic acid groups into the hydrogel bulks. Poly(vinyl alcohol) (PVA) promoted the binding process of newly introduced groups by forming PBA-diol ester bonds with them under alkaline conditions
which was further confirmed by microscopic infrared spectroscopy. The dynamic covalent bonds between two hydrogel sheets were so strong that they were adhered firmly with each other without breaking during the tensile test. Then
two kinds of cationic monomers
methacryloxyethyltrimethyl ammonium chloride (METAC) and
N
-isopropyl acrylamide (NIPAM)
were introduced into the hydrogel system
respectively
to afford two types of stimuli-responsive hydrogels
and the smart hydrogel actuators that dually responded to temeperature and ionic strength were successfully fabricated by the sheet combination
via
PBA-diol ester bonds. Both 2D and 3D architectures could be achieved at elaborate selection of bonding positions. For instance
bonding of a 2D octopus-shaped hydrogel to another planar hydrogel could transfrom the 2D structure into a 3D type along with the swelling of octopus-shaped hydrogel. Finally
integration of METAC and NIPAM into one system could afford a soft gripper with tunable grasping force and dual responsiveness to ion strength and temperature. Our research has provided a new perspective for the design and fabrication of novel hydrogel actuators with complex deformations.
动态硼酸酯键模块化组装水凝胶驱动器离子强度响应温度响应
Dynamic boronic ester bondsBuilding block assemblyHydrogel actuatorIonic strength-responsivenessThermo-responsiveness
Yao C, Liu Z, Yang C, Wang W, Ju X J, Xie R, Chu L Y . Adv Funct Mater , 2015 . 25 2980 - 2991 . DOI:10.1002/adfm.201500420http://doi.org/10.1002/adfm.201500420 .
Yao C, Liu Z, Yang C, Wang W, Ju X J, Xie R, Chu L Y . ACS Appl Mater Interfaces , 2016 . 8 21721 - 21730 . DOI:10.1021/acsami.6b07713http://doi.org/10.1021/acsami.6b07713 .
Zeng Jinfeng(曾金凤), Yang Wendi(杨雯迪), Shi Dongjian(施冬健), Li Xiaojie(李小杰), Chen Mingqing(陈明清) . 高分子学报 , Acta Polymerica Sinica , 2018 . ( 10 ): 1297 - 1306 . DOI:10.11777/j.issn1000-3304.2018.18048http://doi.org/10.11777/j.issn1000-3304.2018.18048 .
Xiao S W, Zhang M Z, He X M, Huang L, Zhang Y X, Ren B P, Zhong M Q, Chang Y, Yang J T, Zheng J . ACS Appl Mater Interfaces , 2018 . 10 21642 - 21653 . DOI:10.1021/acsami.8b06169http://doi.org/10.1021/acsami.8b06169 .
Xiao S W, Yang Y, Zhong M Q, Chen H, Zhang Y X, Yang J T . ACS Appl Mater Interfaces , 2017 . 9 20843 - 20851 . DOI:10.1021/acsami.7b04417http://doi.org/10.1021/acsami.7b04417 .
Gong X L, Xiao Y Y, Pan M, Kang Y, Li B J, Zhang S . ACS Appl Mater Interfaces , 2016 . 8 27432 - 27437 . DOI:10.1021/acsami.6b09605http://doi.org/10.1021/acsami.6b09605 .
Ma C X, Le X X, Tang X L, He J, Xiao P, Zheng J, Xiao H, Lu W, Zhang J W, Huang Y J, Chen T . Adv Funct Mater , 2016 . 26 8670 - 8676 . DOI:10.1002/adfm.v26.47http://doi.org/10.1002/adfm.v26.47 .
Zhang Ying(张滢), Liu Liang(刘梁), Wang Tinghong(王庭宏), Tian Huayu(田华雨), Chen Xuesi(陈学思) . 高分子学报 , Acta Polymerica Sinica , 2017 . ( 7 ): 1150 - 1158.
Yan X Z, Wang F, Zheng B, Huang F H . Chem Soc Rev , 2012 . 41 6042 - 6065 . DOI:10.1039/c2cs35091bhttp://doi.org/10.1039/c2cs35091b .
Ionov L . Mater Today , 2014 . 17 494 - 503 . DOI:10.1016/j.mattod.2014.07.002http://doi.org/10.1016/j.mattod.2014.07.002 .
Zheng J, Xiao P, Le X X, Lu W, Théato P, Ma C X, Du B Y, Zhang J W, Huang Y J, Chen T . J Mater Chem C , 2018 . 6 1320 - 1327 . DOI:10.1039/C7TC04879Chttp://doi.org/10.1039/C7TC04879C .
Ma C X, Lu W, Yang X X, He J, Le X X, Wang L, Zhang J W, Serpe M J, Huang Y J, Chen T . Adv Funct Mater , 2018 . 28 1704568 - 1704575 . DOI:10.1002/adfm.v28.7http://doi.org/10.1002/adfm.v28.7 .
Wang L, JianY K, Le X X, Lu W, Ma C X, Zhang J W, Huang Y J, Huang C F, Chen T . Chem Commun , 2018 . 54 1229 - 1232 . DOI:10.1039/C7CC09456Fhttp://doi.org/10.1039/C7CC09456F .
Yuk H, Lin S, Ma C, Takaffoli M, Fang N X, Zhao X . Nat Commun , 2017 . 8 14230 - 14242 . DOI:10.1038/ncomms14230http://doi.org/10.1038/ncomms14230 .
Lee Y, Cha S H, Kim Y W, Choi D, Sun J Y . Nat Commun , 2018 . 9 1804 - 1812 . DOI:10.1038/s41467-018-03954-xhttp://doi.org/10.1038/s41467-018-03954-x .
Han D, Farino C, Yang C, Scott T, Browe D, Choi W, Freeman J W, Lee H . ACS Appl Mater Interfaces , 2018 . 10 17512 - 17518 . DOI:10.1021/acsami.8b04250http://doi.org/10.1021/acsami.8b04250 .
Oh M S, Song Y S, Kim C, Kim J, You J B, Kim T S, Lee C S, Im S G . ACS Appl Mater Interfaces , 2016 . 8 8782 - 8788 . DOI:10.1021/acsami.5b12704http://doi.org/10.1021/acsami.5b12704 .
Liu Y, Zhang K H, Ma J H, Vancso G J . ACS Appl Mater Interfaces , 2017 . 9 901 - 908 . DOI:10.1021/acsami.6b13097http://doi.org/10.1021/acsami.6b13097 .
Ionov L . Adv Funct Mater , 2013 . 23 4555 - 4570 . DOI:10.1002/adfm.v23.36http://doi.org/10.1002/adfm.v23.36 .
Kim S J, Kim M S, Kim S I, Spinks G M, Kim B C, Wallace G G . Chem Mater , 2006 . 18 5805 - 5809 . DOI:10.1021/cm060988hhttp://doi.org/10.1021/cm060988h .
Lou R C, Wu J, Dinh N D, Chen C H . Adv Funct Mater , 2015 . 25 7272 - 7279 . DOI:10.1002/adfm.v25.47http://doi.org/10.1002/adfm.v25.47 .
Asoh T, Matsusaki M, Kaneko T, Akashi M . Adv Mater , 2008 . 20 2080 - 2083 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Kim Y S, Liu M J, Ishida Y, Ebina Y, Osada M, Sasaki T, Hikima T, Takata M, Aida T . Nat Commun , 2015 . 14 1002 - 1007.
Liu M J, Ishida Y, Ebina Y, Sasaki T, Takara M, Aida T . Nat Mater , 2015 . 517 68 - 72.
Cheng M J, Zhu G Q, Li L, Zhang S, Zhang D Q, Kuehne A J C, Shi F . Angew Chem Int Ed , 2018 . 57 14106 - 14110 . DOI:10.1002/anie.201808294http://doi.org/10.1002/anie.201808294 .
Ju G N, Guo F L, Zhang Q, Kuehne A J C, Cui S X, Cheng M J, Shi F . Adv Mater , 2017 . 29 1702444 - 1702450 . DOI:10.1002/adma.v29.37http://doi.org/10.1002/adma.v29.37 .
Ju G N, Cheng M J, Guo F L, Zhang Q, Shi F . Angew Chem Int Ed , 2018 . 130 9101 - 9105 . DOI:10.1002/ange.201803632http://doi.org/10.1002/ange.201803632 .
Zhao Q, Yang X X, Ma C X, Chen D, Bai H, Li T F, Yang W, Xie T . Mater Horiz , 2016 . 3 422 - 428 . DOI:10.1039/C6MH00167Jhttp://doi.org/10.1039/C6MH00167J .
Tamesue S, Yasuda K, Endo T . ACS Appl Mater Interfaces , 2018 . 10 29925 - 29932 . DOI:10.1021/acsami.8b09136http://doi.org/10.1021/acsami.8b09136 .
Gladman A S, Matsumoto E A, Nuzzo R G, Mahadevan L, Lewis J A . Nat Mater , 2016 . 15 413 - 418 . DOI:10.1038/nmat4544http://doi.org/10.1038/nmat4544 .
Ge Q, Qi H J, Dunn M L . Appl Phys Lett , 2013 . 103 131901 - 13906 . DOI:10.1063/1.4819837http://doi.org/10.1063/1.4819837 .
Wang X J, Guo X G, Ye J L, Zheng N, Kogli P, Choi D, Zhang Y, Xie Z Q, Zhang Q H, Luan H W, Nan K, Kim B H, Xu Y M, Shan X W, Bai W.B, Sun R J, Wang Z Z, Jang H, Zhang F, Ma Y J, Xu Z, Feng X, Xie T, Huang Y H, Zhang Y H, Rogers J A. Adv Mater, 2018, 31(2): 1805615 – 1805624
Ma C X, Li T F, Zhao Q, Yang X X, Wu J J, Luo Y W, Xie T . Adv Mater , 2014 . 26 5665 - 5669 . DOI:10.1002/adma.201402026http://doi.org/10.1002/adma.201402026 .
Cromwell O R, Chung J, Guan Z B . J Am Chem Soc , 2015 . 137 6492 - 6495 . DOI:10.1021/jacs.5b03551http://doi.org/10.1021/jacs.5b03551 .
Hong S H, Kim S, Park J P, Shin M, Kim K, Ryu J H, Lee H . Biomacromolecules , 2018 . 19 2053 - 2061 . DOI:10.1021/acs.biomac.8b00144http://doi.org/10.1021/acs.biomac.8b00144 .
Brewer S H, Allen A M, Lappi S E, Chasse T L, Briggman K A, Gorman C B, Franzen S . Langmuir , 2004 . 20 5512 - 5520 . DOI:10.1021/la035037mhttp://doi.org/10.1021/la035037m .
Chen Y, Tang Z, Zhang X, Liu Y, Wu S, Guo B . ACS Appl Mater Interfaces , 2018 . 10 24224 - 24231 . DOI:10.1021/acsami.8b09863http://doi.org/10.1021/acsami.8b09863 .
0
浏览量
110
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构