浏览全部资源
扫码关注微信
合成与生物胶体教育部重点实验室 江南大学 无锡 214122
E-mail: wfdong@jiangnan.edu.cn Wei-fu Dong, E-mail: wfdong@jiangnan.edu.cn
纸质出版日期:2019-7,
网络出版日期:2019-3-19,
收稿日期:2019-1-11,
修回日期:2019-1-30,
扫 描 看 全 文
施申伟, 李婷, 汪洋, 东为富. 抗菌杂化SiO2纳米粒子的制备及在聚氨酯中的应用研究[J]. 高分子学报, 2019,50(7):721-729.
Shen-wei Shi, Ting Li, Yang Wang, Wei-fu Dong. Preparation of Antibacterial Hybrid Silica Nanoparticle and Its Application in Polyurethane[J]. Acta Polymerica Sinica, 2019,50(7):721-729.
施申伟, 李婷, 汪洋, 东为富. 抗菌杂化SiO2纳米粒子的制备及在聚氨酯中的应用研究[J]. 高分子学报, 2019,50(7):721-729. DOI: 10.11777/j.issn1000-3304.2019.19009.
Shen-wei Shi, Ting Li, Yang Wang, Wei-fu Dong. Preparation of Antibacterial Hybrid Silica Nanoparticle and Its Application in Polyurethane[J]. Acta Polymerica Sinica, 2019,50(7):721-729. DOI: 10.11777/j.issn1000-3304.2019.19009.
采用价格低廉的硅烷偶联剂制备了反应性季铵化合物(QAC),并用简单的方法将QAC一步接枝在SiO
2
上,制备抗菌杂化SiO
2
纳米粒子. 首先研究了杂化SiO
2
纳米粒子的化学结构、微观形貌以及抗菌性能. 进一步将杂化SiO
2
纳米粒子与聚氨酯复合,并固化成膜. 研究了复合薄膜的抗菌性能、力学性能以及抗菌持久性,并对其进行了抑菌圈测试. 结果表明:与纯SiO
2
纳米粒子相比,杂化SiO
2
纳米粒子具有优异的抗菌性能,可以在20 min内完全灭杀大肠杆菌与表皮葡萄球菌. 杂化SiO
2
纳米粒子易在薄膜表面富集,仅添加少量(5 wt%)的杂化SiO
2
纳米粒子便可使薄膜获得良好的抗菌性能以及较高的拉伸强度;对复合薄膜进行加速老化处理后,仍具有良好的抗菌性能,表明该复合薄膜具有良好的抗菌持久性与稳定性;抑菌圈的测试表明,复合薄膜为接触型抗菌材料,无抗菌物质浸出,更加安全高效.
A series of reactive QACs with different chain lengths were prepared by inexpensive tertiary amine silane coupling agent
which were covalently grafted onto the surface of SiO
2
nanoparticles in one step
via
a modified Stöber method. This method can increase the graft ratio of QAC relative to the use of dry silica powder. The structure and appearance of hybrid SiO
2
nanoparticles were studied by Fourier transform infrared spectroscopy (FTIR)
transmission electron microscopy (TEM)
zeta potential and thermogravimetric analysis (TGA). The antibacterial activity of hybrid SiO
2
nanoparticles was evaluated by shake flask method. The composite films with excellent antimicrobial properties were obtained from a mixture of a polyurethane acrylate prepolymer and hybrid SiO
2
nanoparticles
via
UV curing. The standard antibacterial test method ISO 22196 was used to evaluate the antibacterial properties of the film. The results showed that the hybrid SiO
2
nanoparticles have a uniform particle size (~ 40 nm)
a smooth spherical shape and a high positive charge on the surface. Antibacterial test results indicated that the hybrid SiO
2
nanoparticles have excellent antibacterial activity compared with pure SiO
2
nanoparticles
and can completely killed
Escherichia coli
and
Staphylococcus epidermidis
in 50 min. As the QAC alkyl chain grows
the antibacterial properties of the nanoparticles are further improved and SiO
2
-Q-12 can killed two bacteria completely within 20 min. This is mainly due to the hybrid SiO
2
nanoparticles are light and have a high positive charge on the surface
so they can be quickly adsorbed on the surface of bacteria to achieve rapid sterilization. The hybrid SiO
2
nanoparticles were enriched on the surface of the film. Adding a small amount (5 wt%) of hybrid SiO
2
nanoparticles could endow the film with good antibacterial properties and high tensile strength. After the accelerated aging treatment of the composite film according to the national standard GB 15979-2002
it still possessed good antibacterial properties
indicating that the composite film has excellent antibacterial durability and stability. The test of the inhibition zone showed that the composite film was a contact antibacterial material
no antibacterial substance leaching
which was safer and more efficient.
共价接枝杂化SiO2表面富集接触型抗菌
Covalent graftingHybrid SiO2Surface enrichmentContact antibacterial
Hu Shaodong(胡少东), Wang Chuan(王川), Cai Mengtan(蔡孟锬), Zhai Shuying(翟树英), Luo Xianglin(罗祥林) . Acta Polymerica Sinica(高分子学报) , 2014 . ( 6 ): 782 - 788.
Kim T, Zhang Q Z, Li J, Zhang L F, Jokerst J V . ACS Nano , 2018 . 12 ( 6 ): 5615 - 5625 . DOI:10.1021/acsnano.8b01362http://doi.org/10.1021/acsnano.8b01362 .
Zhang Y, He X L, Ding M M, He W, Li J H, Li J S, Tan H . Biomacromolecules , 2018 . 19 ( 2 ): 279 - 287 . DOI:10.1021/acs.biomac.7b01016http://doi.org/10.1021/acs.biomac.7b01016 .
Lei R Y, Hou J C, Chen Q X, Yuan W R, Cheng B L, Sun Y Q, Jin Y, Ge L J, Ben-Sasson S A, Chen J, Wang H X, Lu W Y, Fang X M . ACS Nano , 2018 . 12 ( 6 ): 5284 - 5296 . DOI:10.1021/acsnano.7b09109http://doi.org/10.1021/acsnano.7b09109 .
Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson E E, Brochado A R, Fernandez K C, Dose H, Mori H, Patil K R, Bork P, Typas A . Nature , 2018 . 555 623 - 628 . DOI:10.1038/nature25979http://doi.org/10.1038/nature25979 .
Brochado A R, Telzerow A, Bobonis J, Banzhaf M, Mateus A, Selkrig J, Huth E, Bassler S, Beas J Z, Zietek M, Ng N, Foerster S, Ezraty B, Py B, Barras F, Savitski M M, Bork P, Göttig S, Typas A . Nature , 2018 . 559 259 - 263 . DOI:10.1038/s41586-018-0278-9http://doi.org/10.1038/s41586-018-0278-9 .
Sun D D, Zhang W W, Mou Z P, Chen Y, Guo F, Yang E D, Wang W Y . ACS Appl Mater Interfaces , 2017 . 9 ( 11 ): 10047 - 10060 . DOI:10.1021/acsami.7b02380http://doi.org/10.1021/acsami.7b02380 .
Perdikaki A, Galeou A, Pilatos G, Prombona A, Karanikolos G N . Langmuir , 2018 . 34 ( 37 ): 11156 - 11166 . DOI:10.1021/acs.langmuir.8b01880http://doi.org/10.1021/acs.langmuir.8b01880 .
Ur Rehman M A, Ferraris S, Goldmann W H, Perero S, Bastan F E, Nawaz Q, Confiengo G G D, Ferraris M, Boccaccini A R . ACS Appl Mater Interfaces , 2017 . 9 ( 38 ): 32489 - 32497 . DOI:10.1021/acsami.7b08646http://doi.org/10.1021/acsami.7b08646 .
Cao F F, Ju E G, Zhang Y, Wang Z Z, Liu C Q, Li W, Huang Y Y, Dong K, Ren J S, Qu X G . ACS Nano , 2017 . 11 ( 5 ): 4651 - 4659 . DOI:10.1021/acsnano.7b00343http://doi.org/10.1021/acsnano.7b00343 .
Yang X L, Yang J C, Wang L, Ran B, Jia Y X, Zhang L M, Yang G, Shao H W, Jiang X Y . ACS Nano , 2017 . 11 ( 6 ): 5737 - 5745 . DOI:10.1021/acsnano.7b01240http://doi.org/10.1021/acsnano.7b01240 .
Kachoei M, Nourian A, Divband B, Kachoei Z, Shirazi S . Nanomedicine , 2016 . 11 ( 19 ): 2511 - 2527 . DOI:10.2217/nnm-2016-0171http://doi.org/10.2217/nnm-2016-0171 .
Aditya A, Chattopadhyay S, Jha D, Gautam H K, Maiti S, Ganguli M . ACS Appl Mater Interfaces , 2018 . 10 ( 18 ): 15401 - 15411 . DOI:10.1021/acsami.8b01463http://doi.org/10.1021/acsami.8b01463 .
Zhao J, Millians W, Tang S, Wu T H, Zhu L, Ming W H . ACS Appl Mater Interfaces , 2015 . 7 ( 33 ): 18467 - 18472 . DOI:10.1021/acsami.5b04633http://doi.org/10.1021/acsami.5b04633 .
Lin J, Chen X Y, Chen C Y, Hu J T, Zhou C L, Cai X F, Wang W, Zheng C, Zhang P P, Cheng J, Guo Z H, Liu H . ACS Appl Mater Interfaces , 2018 . 10 ( 7 ): 6124 - 6136 . DOI:10.1021/acsami.7b16235http://doi.org/10.1021/acsami.7b16235 .
Song Z Y, Wang H J, Wu Y, Gu J J, Li S J, Han H Y . ACS Omega , 2018 . 3 ( 10 ): 14517 - 14525 . DOI:10.1021/acsomega.8b01265http://doi.org/10.1021/acsomega.8b01265 .
Gude K, Narayanan R . J Phys Chem C , 2010 . 114 ( 14 ): 6356 - 6362 . DOI:10.1021/jp100061ahttp://doi.org/10.1021/jp100061a .
Pageni P, Yang P, Chen Y P, Huang Y, Bam M, Zhu T, Nagarkatti M, Benicewicz B C, Decho A W, Tang C . Biomacromolecules , 2018 . 19 ( 2 ): 417 - 425 . DOI:10.1021/acs.biomac.7b01510http://doi.org/10.1021/acs.biomac.7b01510 .
Ge H W, Zhang J F, Yuan Y, Liu J C, Liu R, Liu X Y . Prog Org Coat , 2017 . 106 20 - 26 . DOI:10.1016/j.porgcoat.2017.02.012http://doi.org/10.1016/j.porgcoat.2017.02.012 .
Chen R, Li T, Zhang Q, Ding Z Y, Ma P M, Zhang S W, Chen M Q, Dong W F, Ming W H . New J Chem , 2017 . 41 9762 - 9768 . DOI:10.1039/C7NJ02023Fhttp://doi.org/10.1039/C7NJ02023F .
Makarovsky I, Boguslavsky Y, Alesker M, Lellouche J, Banin E, Lellouche J P . Adv Funct Mater , 2011 . 21 ( 22 ): 4295 - 4304 . DOI:10.1002/adfm.201101557http://doi.org/10.1002/adfm.201101557 .
Volova T G, Shumilova A A, Shidlovskiy I P, Nikolaeva E D, Sukovatiy A G, Vasiliev A D, Shishatskaya E I . Polym Test , 2018 . 65 54 - 68 . DOI:10.1016/j.polymertesting.2017.10.023http://doi.org/10.1016/j.polymertesting.2017.10.023 .
Wang Y Z, Xue X X, Yang H, Luan C . Appl Surf Sci , 2014 . 292 608 - 614 . DOI:10.1016/j.apsusc.2013.12.017http://doi.org/10.1016/j.apsusc.2013.12.017 .
Yang L, Tang Y, Liu N, Liu C H, Ding Y S, Wu Z Q . Macromolecules , 2016 . 49 ( 20 ): 7692 - 7702 . DOI:10.1021/acs.macromol.6b01870http://doi.org/10.1021/acs.macromol.6b01870 .
Wei B, Gurr P A, Gozen A O, Blencowe A, Solomon D H, Qiao G G, Spontak R J, Genzer J . Nano Lett , 2008 . 8 ( 9 ): 3010 - 3016 . DOI:10.1021/nl802109xhttp://doi.org/10.1021/nl802109x .
Yin Jun(殷俊). Novel Polyethersulfone Organic-inorganic Composite Ultrafiltration Membranes Prepared with Modified SiO2 Nanoparticles and Its Application Research(改性SiO2纳米粒子/聚醚砜复合超滤膜的制备及其应用研究). Doctoral Dissertation of Southeast University(东南大学博士学位论文), 2016
0
浏览量
20
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构