浏览全部资源
扫码关注微信
有机功能分子合成与应用教育部重点实验室 有机化工新材料湖北省协同创新中心 高分子材料湖北省重点实验室 湖北大学化学化工学院 武汉 430062
E-mail: liming@hubu.edu.cn; limingljy@163.com Ming Li, E-mail: liming@hubu.edu.cn; limingljy@163.com
纸质出版日期:2019-7,
网络出版日期:2019-4-9,
收稿日期:2019-1-17,
修回日期:2019-3-1,
扫 描 看 全 文
周登, 黎明. 多孔石墨烯的合成及应用[J]. 高分子学报, 2019,50(7):671-684.
Deng Zhou, Ming Li. Synthesis and Applications of Porous Graphene[J]. Acta Polymerica Sinica, 2019,50(7):671-684.
周登, 黎明. 多孔石墨烯的合成及应用[J]. 高分子学报, 2019,50(7):671-684. DOI: 10.11777/j.issn1000-3304.2019.19014.
Deng Zhou, Ming Li. Synthesis and Applications of Porous Graphene[J]. Acta Polymerica Sinica, 2019,50(7):671-684. DOI: 10.11777/j.issn1000-3304.2019.19014.
石墨烯由于其优异的性能,例如高比表面积、高导电性、良好的热稳定性和优异的机械强度,引起了人们极大的研究兴趣. 但是石墨烯本身不具有固有孔隙. 为了使其具有固有孔隙,各种多孔石墨烯材料被制备出来,例如,全碳型多孔石墨烯、掺杂型多孔石墨烯及多孔石墨烯复合材料等等. 由于多孔石墨烯既能保留原始石墨烯的部分性质,又比原始石墨烯具有更高的比表面积和孔隙体积,它在光电子器件、储能、气体分离/储存、废水分离及光催化等领域都具有巨大的应用前景. 本文主要回顾各种多孔石墨烯材料的合成方法以及这些材料在各个领域的应用,并展望了多孔石墨烯材料在合成和应用中的机遇和挑战.
Graphene is an sp
2
carbon material having a hexagonal honeycomb lattice in a single-layer two-dimensional (2D) plane due to its excellent properties such as high specific surface area
high electrical conductivity
good thermal stability and excellent mechanical properties. It has already aroused great research interest. Porous graphene refers to a carbon material possessing nano-scale pores in a two-dimensional plane. Due to the introduction of pores
not only the accumulation caused by
π
-
π
electron interaction is effectively avoided
but also some properties of the original graphene can be retained for porous graphene with higher specific surface area and pore volume. And also
the band gap of graphene was effectively opened. Therefore
it has great application prospects in the fields of optoelectronic devices
energy storage
gas separation/storage
wastewater separation and photocatalysis. At present
various porous graphene materials (for example
all-carbon porous graphene
doped porous graphene
and porous graphene composite materials
etc.
) prepared by chemical synthesis
hydrothermal method
electrochemical reduction method
and template-oriented chemical vapor deposition (CVD) method
have been well applied in various fields. This paper aims to summarize the design and synthesis of various porous graphene materials
and also discusses the characteristics
advantages and disadvantages of porous graphene and various potential applications as well as the comparison of various porous graphene structures and properties. And looking forward to future research
it may focus on developing simpler
more convenient synthesis methods and how to accurately control the size
structure
and distribution density of pores in porous graphene
how to precisely control the type and distribution of doping elements
and how to better couple with other materials to obtain better composite materials
making porous graphene more excellent in various applications.
石墨烯多孔材料比表面积掺杂复合材料
GraphenePorous materialSpecific surface areaDopingComposite
Allen M J, Tung V C, Kaner R B . Chem Rev , 2010 . 110 ( 1 ): 132 - 145 . DOI:10.1021/cr900070dhttp://doi.org/10.1021/cr900070d .
Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A . Angew Chem Int Ed , 2009 . 48 ( 42 ): 7752 - 7777 . DOI:10.1002/anie.v48:42http://doi.org/10.1002/anie.v48:42 .
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A . Science , 2004 . 306 ( 5696 ): 666 - 669 . DOI:10.1126/science.1102896http://doi.org/10.1126/science.1102896 .
Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S . Adv Mater , 2010 . 22 ( 35 ): 3906 - 3924 . DOI:10.1002/adma.201001068http://doi.org/10.1002/adma.201001068 .
Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H . Small , 2011 . 7 ( 14 ): 1876 - 1902 . DOI:10.1002/smll.201002009http://doi.org/10.1002/smll.201002009 .
Liu J, Xue Y, Zhang M, Dai L . MRS Bull , 2012 . 37 ( 12 ): 1265 - 1272 . DOI:10.1557/mrs.2012.179http://doi.org/10.1557/mrs.2012.179 .
Yan J, Wei T, Shao B, Ma F, Fan Z, Zhang M, Zheng C, Shang Y, Qian W, Wei F . Carbon , 2010 . 48 ( 6 ): 1731 - 1737 . DOI:10.1016/j.carbon.2010.01.014http://doi.org/10.1016/j.carbon.2010.01.014 .
Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F . Adv Mater , 2010 . 22 ( 33 ): 3723 - 3728 . DOI:10.1002/adma.201001029http://doi.org/10.1002/adma.201001029 .
Zhao M Q, Liu X F, Zhang Q, Tian G L, Huang J Q, Zhu W, Wei F . ACS Nano , 2012 . 6 ( 12 ): 10759 - 10769 . DOI:10.1021/nn304037dhttp://doi.org/10.1021/nn304037d .
Shao J J, Lv W, Guo Q, Zhang C, Xu Q, Yang Q H, Kang F . Chem Commun , 2012 . 48 ( 31 ): 3706 - 3708 . DOI:10.1039/C1CC16838Jhttp://doi.org/10.1039/C1CC16838J .
Zhao M Q, Zhang Q, Huang J Q, Tian G L, Chen T C, Qian W Z, Wei F . Carbon , 2013 . 54 403 - 411 . DOI:10.1016/j.carbon.2012.11.055http://doi.org/10.1016/j.carbon.2012.11.055 .
Fan Z J, Yan J, Wei T, Ning G Q, Zhi L J, Liu J C, Cao D X, Wang G L, Wei F . ACS Nano , 2011 . 5 ( 4 ): 2787 - 2794 . DOI:10.1021/nn200195khttp://doi.org/10.1021/nn200195k .
Rakhi R B, Alshareef H N . J Power Sources , 2011 . 196 ( 20 ): 8858 - 8865 . DOI:10.1016/j.jpowsour.2011.06.038http://doi.org/10.1016/j.jpowsour.2011.06.038 .
Rakhi R B, Chen W, Cha D, Alshareef H N . Adv Eng Mater , 2012 . 2 ( 3 ): 381 - 389 . DOI:10.1002/aenm.201100609http://doi.org/10.1002/aenm.201100609 .
Chen S, Duan J, Tang Y, Zhang Qiao S . Chem Eur J , 2013 . 19 ( 22 ): 7118 - 7124 . DOI:10.1002/chem.v19.22http://doi.org/10.1002/chem.v19.22 .
Chen S, Duan J, Jaroniec M, Qiao S Z . J Mater Chem A , 2013 . 1 ( 33 ): 9409 - 9413 . DOI:10.1039/c3ta00133dhttp://doi.org/10.1039/c3ta00133d .
Chen X C, Wei W, Lv W, Su F Y, He Y B, Li B, Kang F, Yang Q H . Chem Commun , 2012 . 48 ( 47 ): 5904 - 5906 . DOI:10.1039/c2cc32276ehttp://doi.org/10.1039/c2cc32276e .
Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F . J Power Sources , 2010 . 195 ( 9 ): 3041 - 3045 . DOI:10.1016/j.jpowsour.2009.11.028http://doi.org/10.1016/j.jpowsour.2009.11.028 .
Ning G, Xu C, Mu L, Chen G, Wang G, Gao J, Fan Z, Qian W, Wei F . Chem Commun , 2012 . 48 ( 54 ): 6815 - 6817 . DOI:10.1039/c2cc31785khttp://doi.org/10.1039/c2cc31785k .
Ning G, Wang H, Zhang X, Xu C, Chen G, Gao J . Particuology , 2013 . 11 ( 4 ): 415 - 420 . DOI:10.1016/j.partic.2012.10.006http://doi.org/10.1016/j.partic.2012.10.006 .
Fan Z, Yan J, Ning G, Wei T, Zhi L, Wei F . Carbon , 2013 . 60 558 - 561 . DOI:10.1016/j.carbon.2013.04.053http://doi.org/10.1016/j.carbon.2013.04.053 .
Chen Y, Liu Z, Sun L, Lu Z, Zhuo K . J Power Sources , 2018 . 390 215 - 223 . DOI:10.1016/j.jpowsour.2018.04.057http://doi.org/10.1016/j.jpowsour.2018.04.057 .
Liu Y, Liu J, Li Z, Fan X, Li Y, Zhang F, Zhang G, Peng W, Wang S . Int J Hydrogen Energy , 2018 . 43 ( 30 ): 13946 - 13952 . DOI:10.1016/j.ijhydene.2018.02.039http://doi.org/10.1016/j.ijhydene.2018.02.039 .
Jiang L, Fan Z . Nanoscale , 2014 . 6 ( 4 ): 1922 - 1945 . DOI:10.1039/C3NR04555Bhttp://doi.org/10.1039/C3NR04555B .
Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao S Z . Chem Rev , 2018 . 118 ( 13 ): 6337 - 6408 . DOI:10.1021/acs.chemrev.7b00689http://doi.org/10.1021/acs.chemrev.7b00689 .
Ramos Ferrer P, Mace A, Thomas S N, Jeon J W . Nano Convergence , 2017 . 4 ( 1 ): 1 - 29 . DOI:10.1186/s40580-017-0123-0http://doi.org/10.1186/s40580-017-0123-0 .
Fischbein M D, Drndić M . Appl Phys Lett , 2008 . 93 ( 11 ): 113107 DOI:10.1063/1.2980518http://doi.org/10.1063/1.2980518 .
Bulbula S T, Lu Y, Dong Y, Yang X Y . New J Chem , 2018 . 42 ( 8 ): 5634 - 5655 . DOI:10.1039/C8NJ00652Khttp://doi.org/10.1039/C8NJ00652K .
Bieri M, Treier M, Cai J, Ait-Mansour K, Ruffieux P, Groning O, Groning P, Kastler M, Rieger R, Feng X, Mullen K, Fasel R . Chem Commun , 2009 . 45 6919 - 6921.
Zhou D, Tan X, Wu H, Tian L, Li M . Angew Chem Int Ed , 2018 . 58 1376 - 1381.
Ning G, Xu C, Hao L, Kazakova O, Fan Z, Wang H, Wang K, Gao J, Qian W, Wei F . Carbon , 2013 . 51 390 - 396 . DOI:10.1016/j.carbon.2012.08.072http://doi.org/10.1016/j.carbon.2012.08.072 .
Akhavan O . ACS Nano , 2010 . 4 ( 7 ): 4174 - 4180 . DOI:10.1021/nn1007429http://doi.org/10.1021/nn1007429 .
Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S . Science , 2011 . 332 ( 6037 ): 1537 DOI:10.1126/science.1200770http://doi.org/10.1126/science.1200770 .
Wang Y J, Zhao N, Fang B, Li H, Bi X T, Wang H . Chem Rev , 2015 . 115 ( 9 ): 3433 - 3467 . DOI:10.1021/cr500519chttp://doi.org/10.1021/cr500519c .
Dai L, Xue Y, Qu L, Choi H J, Baek J B . Chem Rev , 2015 . 115 ( 11 ): 4823 - 4892 . DOI:10.1021/cr5003563http://doi.org/10.1021/cr5003563 .
Liu M, Zhang R, Chen W . Chem Rev , 2014 . 114 ( 10 ): 5117 - 5160 . DOI:10.1021/cr400523yhttp://doi.org/10.1021/cr400523y .
Wang H, Maiyalagan T, Wang X . ACS Catal , 2012 . 2 (5 ): 781 - 794 . DOI:10.1021/cs200652yhttp://doi.org/10.1021/cs200652y .
Wang D W, Su D . Energy Environ Sci , 2014 . 7 ( 2 ): 576 - 591 . DOI:10.1039/c3ee43463jhttp://doi.org/10.1039/c3ee43463j .
Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z . Angew Chem Int Ed , 2011 . 50 ( 31 ): 7132 - 7135 . DOI:10.1002/anie.v50.31http://doi.org/10.1002/anie.v50.31 .
Poh H L, Šimek P, Sofer Z, Pumera M . ACS Nano , 2013 . 7 ( 6 ): 5262 - 5272 . DOI:10.1021/nn401296bhttp://doi.org/10.1021/nn401296b .
Liu Z W, Peng F, Wang H J, Yu H, Zheng W X, Yang J . Angew Chem Int Ed , 2011 . 50 ( 14 ): 3257 - 3261 . DOI:10.1002/anie.201006768http://doi.org/10.1002/anie.201006768 .
Hassani S S, Samiee L, Ghasemy E, Rashidi A, Ganjali M R, Tasharrofi S . Int J Hydrogen Energy , 2018 . 43 ( 33 ): 15941 - 15951 . DOI:10.1016/j.ijhydene.2018.06.162http://doi.org/10.1016/j.ijhydene.2018.06.162 .
Li F, Lu L, Gao D, Wang M, Wang D, Xia Z . Talanta , 2018 . 185 528 - 536 . DOI:10.1016/j.talanta.2018.04.027http://doi.org/10.1016/j.talanta.2018.04.027 .
Dong F, Cai Y, Liu C, Liu J, Qiao J . Int J Hydrogen Energy , 2018 . 43 ( 28 ): 12661 - 12670 . DOI:10.1016/j.ijhydene.2018.04.118http://doi.org/10.1016/j.ijhydene.2018.04.118 .
Liu J, Zan W, Li K, Yang Y, Bu F, Bao W, Xu Y . J Am Chem Soc , 2017 . 139 ( 34 ): 11666 - 11669 . DOI:10.1021/jacs.7b05025http://doi.org/10.1021/jacs.7b05025 .
Klechikov A G, Mercier G, Merino P, Blanco S, Merino C, Talyzin A V . Microporous Mesoporous Mater , 2015 . 210 46 - 51 . DOI:10.1016/j.micromeso.2015.02.017http://doi.org/10.1016/j.micromeso.2015.02.017 .
Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M, Ruoff R . Carbon , 2010 . 48 ( 3 ): 630 - 635 . DOI:10.1016/j.carbon.2009.10.003http://doi.org/10.1016/j.carbon.2009.10.003 .
Huang C C, Pu N W, Wang C A, Huang J C, Sung Y, Ger M D . Sep Purif Technol , 2011 . 82 210 - 215 . DOI:10.1016/j.seppur.2011.09.020http://doi.org/10.1016/j.seppur.2011.09.020 .
Liu Y, Zhang Z, Hu R . Ceram Int , 2018 . 44 ( 11 ): 12458 - 12465 . DOI:10.1016/j.ceramint.2018.04.036http://doi.org/10.1016/j.ceramint.2018.04.036 .
Liu Y, Zhang Z, Wang T . Int J Hydrogen Energy , 2018 . 43 ( 24 ): 11120 - 11131 . DOI:10.1016/j.ijhydene.2018.04.202http://doi.org/10.1016/j.ijhydene.2018.04.202 .
Liu Y, Hu R, Zhang Z. J Porous Mater, 2018, Doi: 10.1007/s10934-018-0653-9
Zhang C J, Pan G L, Zhou Y Q, Xu C W . Ionics , 2018 . 24 ( 10 ): 3095 - 3100 . DOI:10.1007/s11581-018-2435-4http://doi.org/10.1007/s11581-018-2435-4 .
Chakravarty C, Mandal B, Sarkar P . J Phys Chem C , 2018 . 122 ( 28 ): 15835 - 15842 . DOI:10.1021/acs.jpcc.8b02634http://doi.org/10.1021/acs.jpcc.8b02634 .
Ye J, Chen Z, Liu Q, Xu C . J Colloid Interface Sci , 2018 . 516 1 - 8 . DOI:10.1016/j.jcis.2018.01.045http://doi.org/10.1016/j.jcis.2018.01.045 .
Xu Z, Zhang Y, Wang Y, Zhan L . Appl Surf Sci , 2018 . 450 348 - 355 . DOI:10.1016/j.apsusc.2018.04.163http://doi.org/10.1016/j.apsusc.2018.04.163 .
Jing Y, Zhou Z, Cabrera C R, Chen Z . J Mater Chem A , 2014 . 2 ( 31 ): 12104 - 12122 . DOI:10.1039/C4TA01033Ghttp://doi.org/10.1039/C4TA01033G .
Ren L, Hui K N, Hui K S, Liu Y, Qi X, Zhong J, Du Y, Yang J . Sci Rep , 2015 . 5 14229 DOI:10.1038/srep14229http://doi.org/10.1038/srep14229 .
Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao X S . Energy Environ Sci , 2013 . 6 ( 5 ): 1388 - 1414 . DOI:10.1039/c3ee23870ahttp://doi.org/10.1039/c3ee23870a .
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D . Energy Environ Sci , 2011 . 4 ( 9 ): 3243 - 3262 . DOI:10.1039/c1ee01598bhttp://doi.org/10.1039/c1ee01598b .
Cao H, Zhou X, Deng W, Liu Z . J Mater Chem A , 2016 . 4 ( 16 ): 6021 - 6028 . DOI:10.1039/C6TA00064Ahttp://doi.org/10.1039/C6TA00064A .
Zhang L S, Jiang L Y, Yan H J, Wang W D, Wang W, Song W G, Guo Y G, Wan L J . J Mater Chem , 2010 . 20 ( 26 ): 5462 - 5467 . DOI:10.1039/c0jm00672fhttp://doi.org/10.1039/c0jm00672f .
Sun D, Yan X, Yang J, Zhang P, Xue Q . Chem Electro Chem , 2015 . 2 ( 11 ): 1830 - 1838.
Kang W, Deng N, Ju J, Li Q, Wu D, Ma X, Li L, Naebe M, Cheng B . Nanoscale , 2016 . 8 ( 37 ): 16541 - 16588 . DOI:10.1039/C6NR04923Khttp://doi.org/10.1039/C6NR04923K .
Behzadirad M, Lavrova O, Busani T . J Mater Chem. A , 2016 . 4 ( 20 ): 7830 - 7840 . DOI:10.1039/C6TA00605Ahttp://doi.org/10.1039/C6TA00605A .
Wei Seh Z, Li W, Cha J J, Zheng G, Yang Y, McDowell M T, Hsu P C, Cui Y . Nat Commun , 2013 . 4 1331 DOI:10.1038/ncomms2327http://doi.org/10.1038/ncomms2327 .
Xu C, Wu Y, Zhao X, Wang X, Du G, Zhang J, Tu J . J Power Sources , 2015 . 275 22 - 25 . DOI:10.1016/j.jpowsour.2014.11.007http://doi.org/10.1016/j.jpowsour.2014.11.007 .
Sun H, Xu G L, Xu Y F, Sun S G, Zhang X, Qiu Y, Yang S . Nano Res , 2012 . 5 ( 10 ): 726 - 738 . DOI:10.1007/s12274-012-0257-7http://doi.org/10.1007/s12274-012-0257-7 .
Li D, Han F, Wang S, Cheng F, Sun Q, Li W C . ACS Appl Mater Interfaces , 2013 . 5 ( 6 ): 2208 - 2213 . DOI:10.1021/am4000535http://doi.org/10.1021/am4000535 .
Shin E S, Kim K, Oh S H, Cho W I . Chem Commun , 2013 . 49 ( 20 ): 2004 - 2006 . DOI:10.1039/C2CC36986Ahttp://doi.org/10.1039/C2CC36986A .
Li Y, Ye D, Liu W, Shi B, Guo R, Zhao H, Pei H, Xu J, Xie J . ACS Appl Mater Interfaces , 2016 . 8 ( 42 ): 28566 - 28573 . DOI:10.1021/acsami.6b04270http://doi.org/10.1021/acsami.6b04270 .
Huang J Q, Liu X F, Zhang Q, Chen C M, Zhao M Q, Zhang S M, Zhu W, Qian W Z, Wei F . Nano Energy , 2013 . 2 ( 2 ): 314 - 321 . DOI:10.1016/j.nanoen.2012.10.003http://doi.org/10.1016/j.nanoen.2012.10.003 .
Liu S, Xie K, Chen Z, Li Y, Hong X, Xu J, Zhou L, Yuan J, Zheng C . J Mater Chem A , 2015 . 3 ( 21 ): 11395 - 11402 . DOI:10.1039/C5TA00897Bhttp://doi.org/10.1039/C5TA00897B .
You Y, Zeng W, Yin Y X, Zhang J, Yang C P, Zhu Y, Guo Y G . J Mater Chem A , 2015 . 3 ( 9 ): 4799 - 4802 . DOI:10.1039/C4TA06142Jhttp://doi.org/10.1039/C4TA06142J .
Walcarius A . Chem Soc Rev , 2013 . 42 ( 9 ): 4098 - 4140 . DOI:10.1039/c2cs35322ahttp://doi.org/10.1039/c2cs35322a .
Nardecchia S, Carriazo D, Ferrer M L, Gutiérrez M C, del Monte F . Chem Soc Rev , 2013 . 42 ( 2 ): 794 - 830 . DOI:10.1039/C2CS35353Ahttp://doi.org/10.1039/C2CS35353A .
Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L . Chem Soc Rev , 2016 . 45 ( 12 ): 3479 - 3563 . DOI:10.1039/C6CS00135Ahttp://doi.org/10.1039/C6CS00135A .
Zhang J G, Wang D, Xu W, Xiao J, Williford R E . J Power Sources , 2010 . 195 ( 13 ): 4332 - 4337 . DOI:10.1016/j.jpowsour.2010.01.022http://doi.org/10.1016/j.jpowsour.2010.01.022 .
Jung H G, Jeong Y S, Park J B, Sun Y K, Scrosati B, Lee Y J . ACS Nano , 2013 . 7 ( 4 ): 3532 - 3539 . DOI:10.1021/nn400477dhttp://doi.org/10.1021/nn400477d .
Ma Z, Yuan X, Li L, Ma Z F, Wilkinson D P, Zhang L, Zhang J . Energy Environ Sci , 2015 . 8 ( 8 ): 2144 - 2198 . DOI:10.1039/C5EE00838Ghttp://doi.org/10.1039/C5EE00838G .
Sun C, Li F, Ma C, Wang Y, Ren Y, Yang W, Ma Z, Li J, Chen Y, Kim Y, Chen L . J Mater Chem A , 2014 . 2 ( 20 ): 7188 - 7196 . DOI:10.1039/C4TA00802Bhttp://doi.org/10.1039/C4TA00802B .
Wang Z L, Xu D, Xu J J, Zhang L L, Zhang X B . Adv Funct Mater , 2012 . 22 ( 17 ): 3699 - 3705 . DOI:10.1002/adfm.v22.17http://doi.org/10.1002/adfm.v22.17 .
Li F, Zhang T, Zhou H . Energy Environ Sci , 2013 . 6 ( 4 ): 1125 - 1141 . DOI:10.1039/c3ee00053bhttp://doi.org/10.1039/c3ee00053b .
Jeong Y S, Park J B, Jung H G, Kim J, Luo X, Lu J, Curtiss L, Amine K, Sun Y K, Scrosati B, Lee Y . Nano Lett , 2015 . 15 ( 7 ): 4261 - 4268 . DOI:10.1021/nl504425hhttp://doi.org/10.1021/nl504425h .
Wang L, Zhao X, Lu Y, Xu M, Zhang D, Ruoff R S, Stevenson K J, Goodenough J B . J Electrochem Soc , 2011 . 158 ( 12 ): A1379 DOI:10.1149/2.068112jeshttp://doi.org/10.1149/2.068112jes .
Xiao J, Zhang J M, Li X L, Shao Y Y, Zhang J G. . Nanotechnology , 2013 . 24 ( 42 ): 424004 DOI:10.1088/0957-4484/24/42/424004http://doi.org/10.1088/0957-4484/24/42/424004 .
Cui H, Zhou Z, Jia D . Mater Horizons , 2017 . 4 ( 1 ): 7 - 19 . DOI:10.1039/C6MH00358Chttp://doi.org/10.1039/C6MH00358C .
Li J, Zhang Y, Zhou W, Nie H, Zhang H . J Power Sources , 2014 . 262 29 - 35 . DOI:10.1016/j.jpowsour.2014.03.117http://doi.org/10.1016/j.jpowsour.2014.03.117 .
Yang X Y, Chen L H, Li Y, Rooke J C, Sanchez C, Su B L . Chem Soc Rev , 2017 . 46 ( 2 ): 481 - 558 . DOI:10.1039/C6CS00829Ahttp://doi.org/10.1039/C6CS00829A .
Xiao J, Mei D, Li X, Xu W, Wang D, Graff G L, Bennett W D, Nie Z, Saraf LV, Aksay IA, Liu J, Zhang J G . Nano Lett , 2011 . 11 ( 11 ): 5071 - 5078 . DOI:10.1021/nl203332ehttp://doi.org/10.1021/nl203332e .
Yang W, Ni M, Ren X, Tian Y, Li N, Su Y, Zhang X . Curr Opin Colloid Interface Sci , 2015 . 20 ( 5 ): 416 - 428.
Tan Y B, Lee J M . J Mater Chem A , 2013 . 1 ( 47 ): 14814 - 14843 . DOI:10.1039/c3ta12193chttp://doi.org/10.1039/c3ta12193c .
Wang Q, Yan J, Fan Z . Energy Environ Sci , 2016 . 9 ( 3 ): 729 - 762 . DOI:10.1039/C5EE03109Ehttp://doi.org/10.1039/C5EE03109E .
You B, Jiang J, Fan S . ACS Appl Mater Interfaces , 2014 . 6 ( 17 ): 15302 - 15308 . DOI:10.1021/am503783thttp://doi.org/10.1021/am503783t .
Tong X, Zhuo H, Wang S, Zhong L, Hu Y, Peng X, Zhou W, Sun R . RSC Adv , 2016 . 6 ( 41 ): 34261 - 34270 . DOI:10.1039/C6RA01565Dhttp://doi.org/10.1039/C6RA01565D .
Tian W, Gao Q, Tan Y, Yang K, Zhu L, Yang C, Zhang H . J Mater Chem A , 2015 . 3 ( 10 ): 5656 - 5664 . DOI:10.1039/C4TA06620Khttp://doi.org/10.1039/C4TA06620K .
Gao Y P, Zhai Z-B, Huang K J, Zhang Y Y . New J Chem , 2017 . 41 ( 20 ): 11456 - 11470 . DOI:10.1039/C7NJ02580Ghttp://doi.org/10.1039/C7NJ02580G .
Yu S, Liu Y-D, Li Y, Lin Y, Shen J, Zhang L, Li X M, He T . Mater Chem Phys , 2016 . 177 171 - 178 . DOI:10.1016/j.matchemphys.2016.04.014http://doi.org/10.1016/j.matchemphys.2016.04.014 .
Chang B, Zhang S, Sun L, Yin H, Yang B . RSC Adv , 2016 . 6 ( 75 ): 71360 - 71369 . DOI:10.1039/C6RA10947Khttp://doi.org/10.1039/C6RA10947K .
Gu W, Sevilla M, Magasinski A, Fuertes A B, Yushin G . Energy Environ Sci , 2013 . 6 ( 8 ): 2465 - 2476 . DOI:10.1039/c3ee41182fhttp://doi.org/10.1039/c3ee41182f .
Wu Y P, Fang S, Jiang Y, Holze R . J Power Sources , 2002 . 108 ( 1 ): 245 - 249.
Romero J, Rodriguez San Miguel D, Ribera A, Mas Ballesté R, Otero T F, Manet I, Licio F, Abellán G, Zamora F, Coronado E . J Mater Chem A , 2017 . 5 ( 9 ): 4343 - 4351 . DOI:10.1039/C6TA09296Ahttp://doi.org/10.1039/C6TA09296A .
Yu W, Wang H, Liu S, Mao N, Liu X, Shi J, Liu W, Chen S, Wang X . J Mater Chem A , 2016 . 4 ( 16 ): 5973 - 5983 . DOI:10.1039/C6TA01821Ahttp://doi.org/10.1039/C6TA01821A .
Yu X, Kang Y, Park H S. Carbon, 2016, 101: 49-56
Balamurugan J, Thanh T D, Kim N H, Lee J H . J Mater Chem A , 2016 . 4 ( 24 ): 9555 - 9565 . DOI:10.1039/C6TA03132Chttp://doi.org/10.1039/C6TA03132C .
Biener J, Stadermann M, Suss M, Worsley M A, Biener M M, Rose K A, Baumann T F . Energy Environ Sci , 2011 . 4 ( 3 ): 656 - 667 . DOI:10.1039/c0ee00627khttp://doi.org/10.1039/c0ee00627k .
Gaponik N, Herrmann A K, Eychmüller A . J Phys Chem Lett , 2012 . 3 ( 1 ): 8 - 17 . DOI:10.1021/jz201357rhttp://doi.org/10.1021/jz201357r .
Worsley M A, Pauzauskie P J, Olson T Y, Biener J, Satcher J H, Baumann T F . J Am Chem Soc , 2010 . 132 ( 40 ): 14067 - 14069 . DOI:10.1021/ja1072299http://doi.org/10.1021/ja1072299 .
Li Y, Chen J, Huang L, Li C, Hong J D, Shi G . Adv Mater , 2014 . 26 ( 28 ): 4789 - 4793 . DOI:10.1002/adma.v26.28http://doi.org/10.1002/adma.v26.28 .
Choi W, Azad U P, Choi J P, Lee D . Electroanalysis , 2018 . 30 ( 7 ): 1472 - 1478 . DOI:10.1002/elan.v30.7http://doi.org/10.1002/elan.v30.7 .
Wu Z S, Yang S, Sun Y, Parvez K, Feng X, Müllen K . J Am Chem Soc , 2012 . 134 ( 22 ): 9082 - 9085 . DOI:10.1021/ja3030565http://doi.org/10.1021/ja3030565 .
Hu J, Li Y, Gao G, Xia S . Sensors , 2017 . 17 ( 11 ): 2594/1 - 2594/16.
Tabish T A, Memon F A, Gomez D E, Horsell D W, Zhang S . Sci Rep , 2018 . 8 ( 1 ): 1817 DOI:10.1038/s41598-018-19978-8http://doi.org/10.1038/s41598-018-19978-8 .
Blankenburg S, Bieri M, Fasel R, Müllen K, Pignedoli C A, Passerone D . Small , 2010 . 6 ( 20 ): 2266 - 2271 . DOI:10.1002/smll.v6:20http://doi.org/10.1002/smll.v6:20 .
Du H, Li J, Zhang J, Su G, Li X, Zhao Y . J Phys Chem C , 2011 . 115 ( 47 ): 23261 - 23266 . DOI:10.1021/jp206258uhttp://doi.org/10.1021/jp206258u .
Hankel M, Jiao Y, Du A, Gray S K, Smith S C . J Phys Chem C , 2012 . 116 ( 11 ): 6672 - 6676 . DOI:10.1021/jp211930ahttp://doi.org/10.1021/jp211930a .
Hauser A W, Schwerdtfeger P . Phys Chem Chem Phys , 2012 . 14 ( 38 ): 13292 - 13298 . DOI:10.1039/c2cp41889dhttp://doi.org/10.1039/c2cp41889d .
Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J . Nanoscale , 2012 . 4 ( 17 ): 5477 - 5482 . DOI:10.1039/c2nr31402ahttp://doi.org/10.1039/c2nr31402a .
Si C, Zhou G . J Phys Chem C , 2012 . 137 ( 18 ): 184309 DOI:10.1063/1.4766323http://doi.org/10.1063/1.4766323 .
Jungthawan S, Reunchan P, Limpijumnong S . Carbon , 2013 . 54 359 - 364 . DOI:10.1016/j.carbon.2012.11.048http://doi.org/10.1016/j.carbon.2012.11.048 .
Schrier J . Phys Chem Lett , 2010 . 1 ( 15 ): 2284 - 2287 . DOI:10.1021/jz100748xhttp://doi.org/10.1021/jz100748x .
Oyama S T, Lee D, Hacarlioglu P, Saraf R F . J Membr Sci , 2004 . 244 ( 1 ): 45 - 53.
Jiang D, Cooper V R, Dai S . Nano Lett , 2009 . 9 ( 12 ): 4019 - 4024 . DOI:10.1021/nl9021946http://doi.org/10.1021/nl9021946 .
Zarei A, Rashidi A, Saber Tehrani M, Aberoomand Azar P. Int J Environ Sci Technol, 2018, DOI: 10.1007/s13762-018-1670-6
0
浏览量
46
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构