浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
3.吉林省生物医用高分子材料工程实验室 长春 130022
E-mail: xiaocs@ciac.ac.cn Chun-sheng Xiao, E-mail: xiaocs@ciac.ac.cn
纸质出版日期:2019-5,
网络出版日期:2019-4-4,
收稿日期:2019-1-22,
修回日期:2019-2-27,
扫 描 看 全 文
丁晓亚, 王宇, 李杲, 肖春生, 陈学思. 基于亚胺硼酸盐和硼酸酯键的可注射自修复水凝胶及其多重响应性能研究[J]. 高分子学报, 2019,50(5):505-515.
Xiao-ya Ding, Yu Wang, Gao Li, Chun-sheng Xiao, Xue-si Chen. Iminoboronate Ester Cross-linked Hydrogels with Injectable, Self-healing and Multi-responsive Properties[J]. Acta Polymerica Sinica, 2019,50(5):505-515.
丁晓亚, 王宇, 李杲, 肖春生, 陈学思. 基于亚胺硼酸盐和硼酸酯键的可注射自修复水凝胶及其多重响应性能研究[J]. 高分子学报, 2019,50(5):505-515. DOI: 10.11777/j.issn1000-3304.2019.19015.
Xiao-ya Ding, Yu Wang, Gao Li, Chun-sheng Xiao, Xue-si Chen. Iminoboronate Ester Cross-linked Hydrogels with Injectable, Self-healing and Multi-responsive Properties[J]. Acta Polymerica Sinica, 2019,50(5):505-515. DOI: 10.11777/j.issn1000-3304.2019.19015.
报道了一种基于亚胺硼酸盐和硼酸酯键的动态共价交联水凝胶. 该水凝胶是通过2-甲酰基苯基硼酸(2-FPBA)与超支化聚乙烯亚胺(PEI)末端的伯胺基团和海藻酸钠(SA)糖单元上的顺式二醇反应形成亚胺硼酸盐-硼酸酯交联结构制得. 该水凝胶制备过程简单,所需高分子材料无需事先进行化学修饰;成胶条件温和,在室温下混合即可快速形成水凝胶. 流变学实验表明,水凝胶力学强度随PEI、2-FPBA和SA中反应基团比例的变化而变化. 同时,由于成胶所用化学键—亚胺硼酸盐和硼酸酯键—均为动态共价键,所得水凝胶还具有良好的自修复和可注射性能,可用作3D打印的水凝胶“墨水”. 体外降解实验结果表明,水凝胶对pH值、H
2
O
2
以及多种生物分子(如半胱氨酸、谷胱甘肽以及果糖等)都具有响应性,可用作蛋白药物响应性释放的载体. 进一步体外细胞毒性实验表明,水凝胶对细胞没有明显的毒性,具有良好的生物相容性.
Injectable self-healing hydrogels are fancy candidates for biomedical applications
especially in such areas as minimally invasive surgical procedures
interventional therapy
and 3D bio-printing. Herein
a general and robust synthetic route to injectable self-healing hydrogels was developed based on a facile three-component reaction between the primary amine groups in hyperbranched poly(ethylenimine) (PEI)
2-formylphenylboronic acid (2-FPBA)
and the
cis
-diols in sodium alginate (SA). Briefly
2-FPBA reacted with PEI at first to generate a PEI/2-FPBA conjugate through forming iminoboronate bonds. The residual boronic acid groups in PEI/2-FPBA conjugate further reacted with
cis
-diols in the sugar unite of SA to generate iminoboronate ester linkages
thereby yielding the target product of hydrogels. The formation of iminoboronate and boronic acid ester bonds in iminoboronate ester linkages was confirmed by
1
H- and
11
B-NMR spectra. Dynamic rheological measurements revealed that the storage modulus (
G
′) of hydrogels was dependent on the feeding molar ratios of primary amine groups in PEI
2-FPBA
and sugar units in SA. Moreover
the resulting hydrogels exhibited excellent self-healing and shear-thinning properties
given that both iminoboronate and boronic acid ester bonds are well known as dynamic covalent bonds. Based on these attributes
the hydrogels prepared were expected to have successful application in 3D printing by serving as a hydrogel " ink”. In addition
their responsiveness towards pH
H
2
O
2
cysteine (Cys)
glutathione (GSH)
and fructose allowed an accelerated degradation process in acidic medium or in the presence of H
2
O
2
Cys
GSH
or fructose; Scanning electron microscopy (SEM) observation further suggested a significant destruction of their porous structure after a period of degradation. As a result
these hydrogels proved quite applicable for the delivery of protein therapeutics with multi-responsive drug release properties. Their minimal cytotoxicity towards A549
HeLa
and L929 cells was also confirmed by the MTT assay. It is worth mentioning that with 2-FPBA functioning as the cross-linker
many other amine groups-rich polymers
even natural proteins
can be used to fabricate dynamic hydrogels with injectable
seal-healing
and multi-responsive properties. Therefore
hydrogels prepared from the strategy proposed in this study may hold tremendous potentials in tissue engineering
drug delivery
and 3D bio-printing.
亚胺硼酸盐键硼酸酯键自修复水凝胶可注射性多重响应性
IminoboronateBoronic acid esterSelf-healing hydrogelInjectabilityMulti-responsiveness
Hoffman A S . Adv Drug Delivery Rev , 2002 . 54 3 - 12 . DOI:10.1016/S0169-409X(01)00239-3http://doi.org/10.1016/S0169-409X(01)00239-3 .
Drury J L, Mooney D J . Biomaterials , 2003 . 24 4337 - 4351 . DOI:10.1016/S0142-9612(03)00340-5http://doi.org/10.1016/S0142-9612(03)00340-5 .
Peppas N A, Hilt J Z, Khademhosseini A, Langer R . Adv Mater , 2006 . 18 1345 - 1360 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Yu L, Ding J . Chem Soc Rev , 2008 . 37 1473 - 1481 . DOI:10.1039/b713009khttp://doi.org/10.1039/b713009k .
Duan J J, Zhang L N . Chinese J Polym Sci , 2017 . 35 1165 - 1180 . DOI:10.1007/s10118-017-1983-9http://doi.org/10.1007/s10118-017-1983-9 .
Wang H, Heilshorn S C . Adv Mater , 2015 . 27 3717 - 3736 . DOI:10.1002/adma.v27.25http://doi.org/10.1002/adma.v27.25 .
Rosales A M, Anseth K S . Nat Rev Mater , 2016 . 1 - 15.
Rowan S J, Cantrill S J, Cousins, G R L, Sanders J K M, Stoddart J F . Angew Chem Int Ed , 2002 . 41 898 - 952 . DOI:10.1002/1521-3773(20020315)41:6<>1.0.CO;2-Rhttp://doi.org/10.1002/1521-3773(20020315)41:6<>1.0.CO;2-R .
Lehn J M . Chem Soc Rev , 2007 . 36 151 - 60 . DOI:10.1039/B616752Ghttp://doi.org/10.1039/B616752G .
Jin Y, Yu C, Denman R J, Zhang W . Chem Soc Rev , 2013 . 42 6634 - 54 . DOI:10.1039/c3cs60044khttp://doi.org/10.1039/c3cs60044k .
Ji S, Xia J, Xu H . ACS Macro Lett , 2015 . 5 78 - 82.
Zhang Yaling(张亚玲), Yang Bin(杨斌), Xu Liang(徐亮), Zhang Xiaoyong(张小勇), Tao Lei(陶磊), Wei Yen(危岩) . Acta Chimica Sinica(化学学报) , 2013 . 71 485 - 492.
Wei Z, Yang J H, Zhou J, Xu F, Zrinyi M, Dussault P H, Osada Y, Chen Y M . Chem Soc Rev , 2014 . 43 8114 - 31 . DOI:10.1039/C4CS00219Ahttp://doi.org/10.1039/C4CS00219A .
Li Q, Liu C, Wen J, Wu Y, Shan Y, Liao J . Chin Chem Lett , 2017 . 28 1857 - 1874 . DOI:10.1016/j.cclet.2017.05.007http://doi.org/10.1016/j.cclet.2017.05.007 .
Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N . Bone Res , 2017 . 5 17014 DOI:10.1038/boneres.2017.14http://doi.org/10.1038/boneres.2017.14 .
Ye Bihua(叶碧华), Meng Lu(孟璐), Li Lihua(李立华), Li Na(李娜), Li Zhiwen(李志文), Li Riwang(李日旺), Cai Zhengwei(蔡正伟), Zhou Changren(周长忍) . Acta Polymerica Sinica(高分子学报) , 2016 . ( 2 ): 134 - 148.
Zhang Y, Tao L, Li S, Wei Y . Biomacromolecules , 2011 . 12 2894 - 2901 . DOI:10.1021/bm200423fhttp://doi.org/10.1021/bm200423f .
Yang B, Zhang Y, Zhang X, Tao L, Li S, Wei Y . Polym Chem , 2012 . 3 3235 - 3238 . DOI:10.1039/c2py20627ghttp://doi.org/10.1039/c2py20627g .
Li Y, Wang X, Wei Y, Tao L . Chin Chem Lett , 2017 . 28 2053 - 2057 . DOI:10.1016/j.cclet.2017.09.004http://doi.org/10.1016/j.cclet.2017.09.004 .
Zhang Y, Fu C, Li Y, Wang K, Wang X, Wei Y, Tao L . Polym Chem , 2017 . 8 537 - 544 . DOI:10.1039/C6PY01704Ehttp://doi.org/10.1039/C6PY01704E .
Qu J, Zhao X, Ma P X, Guo B . Acta Biomater , 2017 . 58 168 - 180 . DOI:10.1016/j.actbio.2017.06.001http://doi.org/10.1016/j.actbio.2017.06.001 .
Qu J, Zhao X, Liang Y, Zhang T, Ma P X, Guo B . Biomaterials , 2018 . 183 185 - 199 . DOI:10.1016/j.biomaterials.2018.08.044http://doi.org/10.1016/j.biomaterials.2018.08.044 .
Guo B, Qu J, Zhao X, Zhang M . Acta Biomater , 2019 . 84 180 - 193 . DOI:10.1016/j.actbio.2018.12.008http://doi.org/10.1016/j.actbio.2018.12.008 .
Yesilyurt V, Webber M J, Appel E A, Godwin C, Langer R, Anderson D G . Adv Mater , 2016 . 28 86 - 91 . DOI:10.1002/adma.201502902http://doi.org/10.1002/adma.201502902 .
Ding X, Li G, Xiao C, Chen X . Macromol Chem Phys , 2019 . 220 1800484 DOI:10.1002/macp.v220.3http://doi.org/10.1002/macp.v220.3 .
Cao L, Cao B, Lu C, Wang G, Yu L, Ding J . J Mater Chem B , 2015 . 3 1268 - 1280 . DOI:10.1039/C4TB01705Fhttp://doi.org/10.1039/C4TB01705F .
Tseng T C, Tao L, Hsieh F Y, Wei Y, Chiu I M, Hsu S H . Adv Mater , 2015 . 27 3518 - 3524 . DOI:10.1002/adma.v27.23http://doi.org/10.1002/adma.v27.23 .
Wu X, He C, Wu Y, Chen X . Biomaterials , 2016 . 75 148 - 62 . DOI:10.1016/j.biomaterials.2015.10.016http://doi.org/10.1016/j.biomaterials.2015.10.016 .
Deng G, Li F, Yu H, Liu F, Liu C, Sun W, Jiang H, Chen Y . ACS Macro Lett , 2012 . 1 275 - 279 . DOI:10.1021/mz200195nhttp://doi.org/10.1021/mz200195n .
Grover G N, Lam J, Nguyen T H, Segura T, Maynard H D . Biomacromolecules , 2012 . 13 3013 - 3017 . DOI:10.1021/bm301346ehttp://doi.org/10.1021/bm301346e .
Lou J, Liu F, Lindsay C D, Chaudhuri O, Heilshorn S C, Xia Y . Adv Mater , 2018 . 1705215 .
Wei Z, Yang J H, Liu Z Q, Xu F, Zhou J X, Zrínyi M, Osada Y, Chen Y M . Adv Funct Mater , 2015 . 25 1352 - 1359 . DOI:10.1002/adfm.v25.9http://doi.org/10.1002/adfm.v25.9 .
Otsuka H, Nagano S, Kobashi Y, Maeda T, Takahara A A . Chem Commun , 2010 . 46 1150 - 1152 . DOI:10.1039/B916128Ghttp://doi.org/10.1039/B916128G .
Bandyopadhyay A, Gao J . J Am Chem Soc , 2016 . 138 2098 - 2101 . DOI:10.1021/jacs.5b12301http://doi.org/10.1021/jacs.5b12301 .
Li Y, Liu Y, Ma R, Xu Y, Zhang Y, Li B, An Y, S hi, L . ACS Appl Mater Interfaces , 2017 . 9 13056 - 13067 . DOI:10.1021/acsami.7b00957http://doi.org/10.1021/acsami.7b00957 .
Yan B, Huang J, Han L, Gong L, Li L, Israelachvili J N, Zeng H . ACS Nano , 2017 . 11 11074 - 11081 . DOI:10.1021/acsnano.7b05109http://doi.org/10.1021/acsnano.7b05109 .
Jungst T, Smolan W, Schacht K, Scheibel T, Groll J . Chem Rev , 2016 . 116 1496 - 1539 . DOI:10.1021/acs.chemrev.5b00303http://doi.org/10.1021/acs.chemrev.5b00303 .
Wei Q, Xu M, Liao C, Wu Q, Liu M, Zhang Y, Wu C, Cheng L, Wang Q . Chem Sci , 2016 . 7 2748 - 2752 . DOI:10.1039/C5SC02234Ghttp://doi.org/10.1039/C5SC02234G .
Cal P M, Vicente J B, Pires E, Coelho A V, Veiros L F, Cordeiro C, Gois P M . J Am Chem Soc , 2016 . 2012, 134 10299 - 10305.
Cambray S, Gao J . Accounts Chem Res , 2018 . 51 2198 - 2206 . DOI:10.1021/acs.accounts.8b00154http://doi.org/10.1021/acs.accounts.8b00154 .
Pettignano A, Grijalvo S, Haring M, Eritja R, Tanchoux N, Quignard F, Diaz Diaz D . Chem Commun , 2017 . 53 3350 - 3353 . DOI:10.1039/C7CC00765Ehttp://doi.org/10.1039/C7CC00765E .
Zhang Zhen(张震), He Chaoliang(贺超良), Xu Qinghua(徐清华), Zhuang Xiuli(庄秀丽), Chen Xuesi(陈学思) . Acta Polymerica Sinica(高分子学报) , 2018 . ( 1 ): 99 - 108.
0
浏览量
119
下载量
13
CSCD
关联资源
相关文章
相关作者
相关机构