浏览全部资源
扫码关注微信
华东理工大学化学与分子工程学院 上海市功能性材料化学重点实验室 上海 200237
[ "张伟安,男,1976年出生. 华东理工大学化学与分子工程学院教授,博士生导师. 2003年于中国科学技术大学获得高分子化学与物理专业博士学位;2004年,为上海交通大学化学与化工学院讲师;2008 ~ 2010年,受洪堡基金会资助在德国拜罗伊特大学Axel Müller课题组进行访问研究,洪堡学者;2011 ~ 2012年,受欧盟第七框架(PF7)项目资助在英国利兹大学进行访问研究,玛丽居里学者;主持国家自然科学基金青年基金和面上项目共5项. 主要研究方向:特定结构光响应高分子材料的制备和应用,POSS基功能性杂化高分子的构建、组装和应用" ]
纸质出版日期:2019-7,
网络出版日期:2019-4-3,
收稿日期:2019-1-25,
修回日期:2019-2-27,
扫 描 看 全 文
田佳, 张伟安. 特定结构的卟啉聚合物的构建及应用[J]. 高分子学报, 2019,50(7):653-670.
Jia Tian, Wei-an Zhang. Construction and Applications of Well-defined Porphyrin-containing Polymers[J]. Acta Polymerica Sinica, 2019,50(7):653-670.
田佳, 张伟安. 特定结构的卟啉聚合物的构建及应用[J]. 高分子学报, 2019,50(7):653-670. DOI: 10.11777/j.issn1000-3304.2019.19018.
Jia Tian, Wei-an Zhang. Construction and Applications of Well-defined Porphyrin-containing Polymers[J]. Acta Polymerica Sinica, 2019,50(7):653-670. DOI: 10.11777/j.issn1000-3304.2019.19018.
卟啉及其衍生物由于其独特的性质和功能而备受关注,并广泛应用于能源、催化和生物医学等领域. 卟啉聚合物同时具有卟啉和聚合物的特征,在高分子领域引起了广泛关注. 以卟啉为基元构建的特定结构卟啉聚合物不仅具有明确的分子结构,而且在性能上具有很多崭新的特点. 通过将卟啉基元修饰成单体、引发剂和链转移试剂等功能基元,利用“点击化学”、原子转移自由基聚合和可逆加成-断裂链转移聚合等合成手段,许多具有特定结构的卟啉聚合物可以被高效可控地构建. 本文主要介绍近几年包括本课题组在内的以卟啉为基元的嵌段聚合物、交替共聚物、星型聚合物以及树枝状聚合物等特定结构卟啉聚合物的构建,此类聚合物的结构和性能之间的构效关系以及其在光动力治疗等领域的应用.
Porphyrins and their derivatives have attracted much attention due to their unique properties and various functions
and have been widely used in energy
catalysis and biomedical fields. Porphyrin-containing polymers possess both porphyrin and polymeric characteristics
which have also aroused great interest. On the basis of functional porphyrin units
the well-defined porphyrin-containing polymers not only have a clear and specific macromolecular structure
but also have been endowed with a variety of novel and unique features. By modifying the porphyrin units into the initiators
monomers or chain transfer agents
well-defined functional porphyrin-containing polymers with specific structures could be efficiently constructed by ring-opening polymerization (ROP)
atom transfer radical polymerization (ATRP)
reversible addition-fragmentation chain transfer (RAFT) polymerization or the combination of other strategies such as click chemistry. These well-defined porphyrin-containing polymers including telechelic polymers
alternating copolymers
block copolymers
star polymers
supramolecular polymers
can self-assemble to diverse morphologies such as spherical micelles
vesicles
nanorods and wormlike-structures and possess great potential in photodynamic therapy. Particularly
porphyrin-containing alternating copolymers can be obtained by RAFT copolymerization of 4-vinylbenzyl-terminated tetraphenylporphyrin and maleimide isobutyl polyhedral oligomeric silsesquioxane (POSS). The steric hindrance of POSS significantly reduces the
π
-
π
stacking of porphyrin units
which remarkably improve the singlet oxygen quantum yield and the photodynamic therapy efficacy.
嵌段聚合物卟啉星型聚合物超分子聚合物光动力疗法
Block copolymerPorphyrinStar polymerSupramolecular polymerPhotodynamic therapy
Zhang W, Lai W Z, Cao R. Chem Rev , 2017 . 117 ( 4 ): 3717 - 3797 . DOI:10.1021/acs.chemrev.6b00299http://doi.org/10.1021/acs.chemrev.6b00299 .
Ding Y B, Zhu W H, Xie Y S. Chem Rev , 2017 . 117 ( 4 ): 2203 - 2256 . DOI:10.1021/acs.chemrev.6b00021http://doi.org/10.1021/acs.chemrev.6b00021 .
Hiroto S, Miyake Y, Shinokubo H. Chem Rev , 2017 . 117 ( 4 ): 2910 - 3043 . DOI:10.1021/acs.chemrev.6b00427http://doi.org/10.1021/acs.chemrev.6b00427 .
Tanaka T, Osuka A. Chem Soc Rev , 2015 . 44 ( 4 ): 943 - 969 . DOI:10.1039/C3CS60443Hhttp://doi.org/10.1039/C3CS60443H .
Liu F, Zhang Y, Xu L, Zhang W A. Chem-Eur J , 2015 . 21 ( 14 ): 5540 - 5547 . DOI:10.1002/chem.201405334http://doi.org/10.1002/chem.201405334 .
Wang C C, Liu L C, Cao H L, Zhang W A. Biomater Sci-UK , 2017 . 5 ( 2 ): 274 - 284 . DOI:10.1039/C6BM00482Bhttp://doi.org/10.1039/C6BM00482B .
Kim J H, Lee M, Lee J S, Park C B. Angew Chem Int Ed , 2012 . 51 ( 2 ): 517 - 520 . DOI:10.1002/anie.201103244http://doi.org/10.1002/anie.201103244 .
Zhou Y M, Liang X L, Dai Z F. Nanoscale , 2016 . 8 ( 25 ): 12394 - 12405 . DOI:10.1039/C5NR07849Khttp://doi.org/10.1039/C5NR07849K .
Liu K, Xing R R, Chen C J, Shen G Z, Yan L Y, Zou Q L, Ma G H, Mohwald H, Yan X H. Angew Chem Int Ed , 2015 . 54 ( 2 ): 500 - 505.
Liu K, Xing R R, Li Y X, Zou Q L, Mohwald H, Yan X H. Angew Chem Int Ed , 2016 . 55 ( 40 ): 12503 - 12507 . DOI:10.1002/anie.201606795http://doi.org/10.1002/anie.201606795 .
Zou Q L, Abbas M, Zhao L Y, Li S K, Shen G Z, Yan X H. J Am Chem Soc , 2017 . 139 ( 5 ): 1921 - 1927 . DOI:10.1021/jacs.6b11382http://doi.org/10.1021/jacs.6b11382 .
Li S K, Zou Q L, Li Y X, Yuan C Q, Xing R R, Yan X H. J Am Chem Soc , 2018 . 140 ( 34 ): 10794 - 10802 . DOI:10.1021/jacs.8b04912http://doi.org/10.1021/jacs.8b04912 .
Zhang W A, Muller A H E. Prog Polym Sci , 2013 . 38 ( 8 ): 1121 - 1162 . DOI:10.1016/j.progpolymsci.2013.03.002http://doi.org/10.1016/j.progpolymsci.2013.03.002 .
Wang D L, Jin Y, Zhu X Y, Yan D Y. Prog Polym Sci , 2017 . 64 114 - 153 . DOI:10.1016/j.progpolymsci.2016.09.005http://doi.org/10.1016/j.progpolymsci.2016.09.005 .
Zhang Jiawei(张佳玮), Ma Zhiyuan(马致远), Zhao Chuanzhuang(赵传壮), Yuan Jinying(袁金颖), Zhu Xiaoxia(朱晓夏). Acta Polymerica Sinica(高分子学报) , 2018 . ( 7 ): 864 - 877 . DOI:10.11777/j.issn1000-3304.2018.18023http://doi.org/10.11777/j.issn1000-3304.2018.18023 .
Takeuchi M, Tanaka S, Shinkai S. Chem Commun , 2005 . 44 5539 - 5541.
Fukui T, Kawai S, Fujinuma S, Matsushita Y, Yasuda T, Sakurai T, Seki S, Takeuchi M, Sugiyasu K. Nat Chem , 2017 . 9 ( 5 ): 493 - 499 . DOI:10.1038/nchem.2684http://doi.org/10.1038/nchem.2684 .
Tasdelen M A, Kahveci M U, Yagci Y. Prog Polym Sci , 2011 . 36 ( 4 ): 455 - 567 . DOI:10.1016/j.progpolymsci.2010.10.002http://doi.org/10.1016/j.progpolymsci.2010.10.002 .
Takamizu K, Inagaki A, Nomura K. ACS Macro Lett , 2013 . 2 ( 11 ): 980 - 984 . DOI:10.1021/mz400455bhttp://doi.org/10.1021/mz400455b .
Fushimi Y, Koinuma M, Yasuda Y, Nomura K, Asano M S. Macromolecules , 2017 . 50 ( 5 ): 1803 - 1814 . DOI:10.1021/acs.macromol.7b00047http://doi.org/10.1021/acs.macromol.7b00047 .
Li Z Y, Wang H Y, Li C, Zhang X L, Wu X J, Qin S Y, Zhang X Z, Zhuo R X. J Polym Sci, Part A: Polym Chem , 2011 . 49 ( 1 ): 286 - 292 . DOI:10.1002/pola.v49.1http://doi.org/10.1002/pola.v49.1 .
Han K, Zhang J, Zhang W Y, Wang S B, Wu L M, Zhang C, Zhang X Z, Han H Y. ACS Nano , 2017 . 11 ( 3 ): 3178 - 3188 . DOI:10.1021/acsnano.7b00216http://doi.org/10.1021/acsnano.7b00216 .
Tian J, Xu L, Xue Y D, Jiang X Z, Zhang W A. Biomacromolecules , 2017 . 18 ( 12 ): 3992 - 4001 . DOI:10.1021/acs.biomac.7b01037http://doi.org/10.1021/acs.biomac.7b01037 .
Lu J W, Zhang W D, Yuan L, Ma W J, Li X, Lu W, Zhao Y, Chen G J. Macromol Biosci , 2014 . 14 ( 3 ): 340 - 346 . DOI:10.1002/mabi.201300451http://doi.org/10.1002/mabi.201300451 .
Zhang J L, Zhang Z K, Yu B, Wang C, Wu W, Jiang X Q. ACS Appl Mater Interfaces , 2016 . 8 ( 9 ): 5794 - 5803 . DOI:10.1021/acsami.5b10876http://doi.org/10.1021/acsami.5b10876 .
Schappacher M, Deffieux A. J Am Chem Soc , 2011 . 133 ( 6 ): 1630 - 1633 . DOI:10.1021/ja108821phttp://doi.org/10.1021/ja108821p .
Schappacher M, Deffieux A. Macromolecules , 2011 . 44 ( 11 ): 4503 - 4510 . DOI:10.1021/ma200521qhttp://doi.org/10.1021/ma200521q .
Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P T, Mayadunne R T A, Meijs G F, Moad C L, Moad G, Rizzardo E, Thang S H. Macromolecules , 1998 . 31 ( 16 ): 5559 - 5562 . DOI:10.1021/ma9804951http://doi.org/10.1021/ma9804951 .
Xu L, Liu L C, Liu F, Cai H B, Zhang W A. Polym Chem-UK , 2015 . 6 ( 15 ): 2945 - 2954 . DOI:10.1039/C5PY00039Dhttp://doi.org/10.1039/C5PY00039D .
Zhou Q, Xu L, Liu F, Zhang W A. Polymer , 2016 . 97 323 - 334 . DOI:10.1016/j.polymer.2016.04.056http://doi.org/10.1016/j.polymer.2016.04.056 .
Zhou Z J, Song J B, Nie L M, Chen X Y. Chem Soc Rev , 2016 . 45 ( 23 ): 6597 - 6626 . DOI:10.1039/C6CS00271Dhttp://doi.org/10.1039/C6CS00271D .
Lovell J F, Liu T W B, Chen J, Zheng G. Chem Rev , 2010 . 110 ( 5 ): 2839 - 2857 . DOI:10.1021/cr900236hhttp://doi.org/10.1021/cr900236h .
Li X S, Kolemen S, Yoon J, Akkaya E U. Adv Funct Mater , 2017 . 27 ( 5 ): 1604053 DOI:10.1002/adfm.v27.5http://doi.org/10.1002/adfm.v27.5 .
Jin J Q, Zhu Y C, Zhang Z H, Zhang W A. Angew Chem Int Ed , 2018 . 57 ( 50 ): 16354 - 16358 . DOI:10.1002/anie.201808811http://doi.org/10.1002/anie.201808811 .
Chen B L, Dai W B, He B, Zhang H, Wang X Q, Wang Y G, Zhang Q. Theranostics , 2017 . 7 ( 3 ): 538 - 558 . DOI:10.7150/thno.16684http://doi.org/10.7150/thno.16684 .
Dai Y L, Xu C, Sun X L, Chen X Y. Chem Soc Rev , 2017 . 46 ( 12 ): 3830 - 3852 . DOI:10.1039/C6CS00592Fhttp://doi.org/10.1039/C6CS00592F .
Qiu Wenxiu(邱文秀), Cheng Han(程翰), Zhang Xianzheng(张先正), Zhuo Renxi(卓仁禧). Acta Polymerica Sinica(高分子学报) , 2018 . ( 1 ): 32 - 44 . DOI:10.11777/j.issn1000-3304.2018.17256http://doi.org/10.11777/j.issn1000-3304.2018.17256 .
Xue Y, Tian J, Xu L, Liu Z, Shen Y, Zhang W. Eur Polym J , 2019 . 110 344 - 354 . DOI:10.1016/j.eurpolymj.2018.11.033http://doi.org/10.1016/j.eurpolymj.2018.11.033 .
Hijazi I, Jousselme B, Jegou P, Filoramo A, Campidelli S. J Mater Chem , 2012 . 22 ( 39 ): 20936 - 20942 . DOI:10.1039/c2jm33714bhttp://doi.org/10.1039/c2jm33714b .
Wang X C, Wang H Q, Yang Y, He Y J, Zhang L, Li Y F, Li X Y. Macromolecules , 2010 . 43 ( 2 ): 709 - 715 . DOI:10.1021/ma9023119http://doi.org/10.1021/ma9023119 .
Sun C X, Ji S B, Li F, Xu H P. ACS Appl Mater Interfaces , 2017 . 9 ( 15 ): 12924 - 12929 . DOI:10.1021/acsami.7b02367http://doi.org/10.1021/acsami.7b02367 .
Liu F, Zhang Y, Pan X W, Xu L, Xue Y D, Zhang W A. RSC Adv , 2016 . 6 ( 62 ): S7552 - S7562.
Xu L, Liu L C, Liu F, Li W, Chen R B, Gao Y, Zhang W A. J Mater Chem B , 2015 . 3 ( 15 ): 3062 - 3071 . DOI:10.1039/C5TB00276Ahttp://doi.org/10.1039/C5TB00276A .
Jin R H. J Mater Chem , 2004 . 14 ( 3 ): 320 - 327 . DOI:10.1039/b307439khttp://doi.org/10.1039/b307439k .
Li B S, Xu X J, Sun M H, Fu Y Q, Yu G, Liu Y Q, Bo Z S. Macromolecules , 2006 . 39 ( 1 ): 456 - 461 . DOI:10.1021/ma051610shttp://doi.org/10.1021/ma051610s .
Wan Y, Jia K, Li B S, Bo Z S, Xia A D. Sci China Ser B , 2009 . 52 ( 1 ): 56 - 63 . DOI:10.1007/s11426-008-0157-6http://doi.org/10.1007/s11426-008-0157-6 .
Liu Y J, Guo X, Xiang N, Zhao B, Huang H, Li H, Shen P, Tan S T. J Mater Chem , 2010 . 20 ( 6 ): 1140 - 1146 . DOI:10.1039/B916935Khttp://doi.org/10.1039/B916935K .
Nawaz M H, Liu J, Liu F, Wang X S, Zhang W A. Mater Lett , 2013 . 91 71 - 74 . DOI:10.1016/j.matlet.2012.09.053http://doi.org/10.1016/j.matlet.2012.09.053 .
Liu Y N, Jin J Y, Deng H P, Li K, Zheng Y L, Yu C Y, Zhou Y F. Angew Chem Int Ed , 2016 . 55 ( 28 ): 7952 - 7957 . DOI:10.1002/anie.201601516http://doi.org/10.1002/anie.201601516 .
Lehn J M. Science , 2002 . 295 ( 5564 ): 2400 - 2403 . DOI:10.1126/science.1071063http://doi.org/10.1126/science.1071063 .
Lehn J M. Supramolecular Chemistry: Concepts and Perspectives. Weinheim: Wiley-VCH. 1995
Xu Jiangfei(徐江飞), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报) , 2017 . ( 1 ): 37 - 49 . DOI:10.11777/j.issn1000-3304.2017.16262http://doi.org/10.11777/j.issn1000-3304.2017.16262 .
Morisue M, Hoshino Y, Shimizu M, Uemura S, Sakurai S. Chem-Eur J , 2016 . 22 ( 37 ): 13019 - 13022 . DOI:10.1002/chem.201602968http://doi.org/10.1002/chem.201602968 .
Wei P F, Yan X Z, Huang F H. Chem Soc Rev , 2015 . 44 ( 3 ): 815 - 832 . DOI:10.1039/C4CS00327Fhttp://doi.org/10.1039/C4CS00327F .
Wajahat A, Li X H, Fang L, Gong W T, Ning G L. Supramol Chem , 2018 . 30 ( 1 ): 72 - 79 . DOI:10.1080/10610278.2017.1351611http://doi.org/10.1080/10610278.2017.1351611 .
Yang L L, Tan X X, Wang Z Q, Zhang X. Chem Rev , 2015 . 115 ( 15 ): 7196 - 7239 . DOI:10.1021/cr500633bhttp://doi.org/10.1021/cr500633b .
Chen L H, Bai H T, Xu J F, Wang S, Zhang X. ACS Appl Mater Interfaces , 2017 . 9 ( 16 ): 13950 - 13957 . DOI:10.1021/acsami.7b02611http://doi.org/10.1021/acsami.7b02611 .
Ogoshi T, Kanai S, Fujinami S, Yamagishi T A, Nakamoto Y. J Am Chem Soc , 2008 . 130 ( 15 ): 5022 - 5023 . DOI:10.1021/ja711260mhttp://doi.org/10.1021/ja711260m .
Ji Xiaofan(吉晓帆), Xia Danyu(夏丹玉), Yan Xuzhou(颜徐州), Wang Hu(王虎), Huang Feihe(黄飞鹤). Acta Polymerica Sinica(高分子学报) , 2017 . ( 1 ): 9 - 18 . DOI:10.11777/j.issn1000-3304.2017.16167http://doi.org/10.11777/j.issn1000-3304.2017.16167 .
Murray J, Kim K, Ogoshi T, Yao W, Gibb B C. Chem Soc Rev , 2017 . 46 ( 9 ): 2479 - 2496 . DOI:10.1039/C7CS00095Bhttp://doi.org/10.1039/C7CS00095B .
Chen Y, Rui L L, Liu L C, Zhang W A. Polym Chem-UK , 2016 . 7 ( 19 ): 3268 - 3276 . DOI:10.1039/C6PY00505Ehttp://doi.org/10.1039/C6PY00505E .
Rui L L, Xue Y D, Wang Y, Gao Y, Zhang W A. Chem Commun , 2017 . 53 ( 21 ): 3126 - 3129 . DOI:10.1039/C7CC00950Jhttp://doi.org/10.1039/C7CC00950J .
Wu J, Tian J, Rui L L, Zhang W A. Chem Commun , 2018 . 54 ( 55 ): 7629 - 7632 . DOI:10.1039/C8CC04275Fhttp://doi.org/10.1039/C8CC04275F .
Schmidt B V K J, Barner-Kowollik C. Angew Chem Int Ed , 2017 . 56 ( 29 ): 8350 - 8369 . DOI:10.1002/anie.201612150http://doi.org/10.1002/anie.201612150 .
Xu L, Zhang W Y, Cai H B, Liu F, Wang Y, Gao Y, Zhang W A. J Mater Chem B , 2015 . 3 ( 37 ): 7417 - 7426 . DOI:10.1039/C5TB01363Ahttp://doi.org/10.1039/C5TB01363A .
Liu F, Ma Y F, Xu L, Liu L C, Zhang W A. Biomater Sci-UK , 2015 . 3 ( 8 ): 1218 - 1227 . DOI:10.1039/C5BM00045Ahttp://doi.org/10.1039/C5BM00045A .
Assaf K I, Nau W M. Chem Soc Rev , 2015 . 44 ( 2 ): 394 - 418 . DOI:10.1039/C4CS00273Chttp://doi.org/10.1039/C4CS00273C .
Liu Y L, Huang Z H, Liu K, Kelgtermans H, Dehaen W, Wang Z Q, Zhang X. Polym Chem-UK , 2014 . 5 ( 1 ): 53 - 56 . DOI:10.1039/C3PY01036Hhttp://doi.org/10.1039/C3PY01036H .
Yuan B, Yang H, Wang Z Q, Zhang X. Langmuir , 2014 . 30 ( 51 ): 15462 - 15467 . DOI:10.1021/la504068uhttp://doi.org/10.1021/la504068u .
Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S, Avgeropoulos A. Prog Polym Sci , 2005 . 30 ( 7 ): 725 - 782 . DOI:10.1016/j.progpolymsci.2005.04.001http://doi.org/10.1016/j.progpolymsci.2005.04.001 .
Derry M J, Fielding L A, Armes S P. Prog Polym Sci , 2016 . 52 1 - 18 . DOI:10.1016/j.progpolymsci.2015.10.002http://doi.org/10.1016/j.progpolymsci.2015.10.002 .
Zhu Y Q, Yang B, Chen S, Du J Z. Prog Polym Sci , 2017 . 64 1 - 22 . DOI:10.1016/j.progpolymsci.2015.05.001http://doi.org/10.1016/j.progpolymsci.2015.05.001 .
Zhang K K, Jiang M, Chen D Y. Prog Polym Sci , 2012 . 37 ( 3 ): 445 - 486 . DOI:10.1016/j.progpolymsci.2011.09.003http://doi.org/10.1016/j.progpolymsci.2011.09.003 .
Smith A E, Xu X W, Mccormick C L. Prog Polym Sci , 2010 . 35 ( 1-2 ): 45 - 93 . DOI:10.1016/j.progpolymsci.2009.11.005http://doi.org/10.1016/j.progpolymsci.2009.11.005 .
Wang D R, Wang X G. Prog Polym Sci , 2013 . 38 ( 2 ): 271 - 301 . DOI:10.1016/j.progpolymsci.2012.07.003http://doi.org/10.1016/j.progpolymsci.2012.07.003 .
Lynd N A, Meuler A J, Hillmyer M A. Prog Polym Sci , 2008 . 33 ( 9 ): 875 - 893 . DOI:10.1016/j.progpolymsci.2008.07.003http://doi.org/10.1016/j.progpolymsci.2008.07.003 .
Zhao L Z, Liu M M, Li S S, Li A, An H Q, Ye H, Zhang Y Z. J Mater Chem C , 2015 . 3 ( 15 ): 3650 - 3658 . DOI:10.1039/C5TC00037Hhttp://doi.org/10.1039/C5TC00037H .
Fruhbeisser S, Grohn F. Macromol Chem Phys , 2017 . 218 ( 17 ): 1600526 DOI:10.1002/macp.v218.17http://doi.org/10.1002/macp.v218.17 .
Kutz A, Alex W, Krieger A, Grohn F. Macromol Rapid Commun , 2017 . 38 ( 17 ): 1600802 DOI:10.1002/marc.201600802http://doi.org/10.1002/marc.201600802 .
Schappacher M, Deffieux A. Polymer , 2004 . 45 ( 14 ): 4633 - 4639 . DOI:10.1016/j.polymer.2004.05.022http://doi.org/10.1016/j.polymer.2004.05.022 .
Ruthard C, Schmidt M, Grohn F. Macromol Rapid Commun , 2011 . 32 ( 9-10 ): 706 - 711 . DOI:10.1002/marc.v32.9/10http://doi.org/10.1002/marc.v32.9/10 .
Zhao L Z, Li A, Xiang R, Shen L L, Shi L Q. Langmuir , 2013 . 29 ( 28 ): 8936 - 8943 . DOI:10.1021/la401805xhttp://doi.org/10.1021/la401805x .
Zhang Z H, Xue Y D, Zhang P C, Muller A H E, Zhang W A. Macromolecules , 2016 . 49 ( 22 ): 8440 - 8448 . DOI:10.1021/acs.macromol.6b02414http://doi.org/10.1021/acs.macromol.6b02414 .
Zhang P C, Zhang Z H, Jiang X Z, Rui L L, Gao Y, Zhang W A. Polymer , 2017 . 118 268 - 279 . DOI:10.1016/j.polymer.2017.04.063http://doi.org/10.1016/j.polymer.2017.04.063 .
0
浏览量
45
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构