浏览全部资源
扫码关注微信
大连理工大学化工学院 精细化工国家重点实验室 大连 116024
E-mail: guofang@dlut.edu.cn Fang Guo, E-mail: guofang@dlut.edu.cn
纸质出版日期:2019-8,
网络出版日期:2019-4-17,
收稿日期:2019-1-25,
修回日期:2019-2-22,
扫 描 看 全 文
田晶, 王胤然, 付洪然, 郭方. 单茂钪催化乙烯与共轭二烯烃共聚合的研究[J]. 高分子学报, 2019,50(8):826-833.
Jing Tian, Yin-ran Wang, Hong-ran Fu, Fang Guo. Copolymerization of Ethylene and Conjugated Dienes Catalyzed by Half-sandwich Scandium Complexes[J]. Acta Polymerica Sinica, 2019,50(8):826-833.
田晶, 王胤然, 付洪然, 郭方. 单茂钪催化乙烯与共轭二烯烃共聚合的研究[J]. 高分子学报, 2019,50(8):826-833. DOI: 10.11777/j.issn1000-3304.2019.19020.
Jing Tian, Yin-ran Wang, Hong-ran Fu, Fang Guo. Copolymerization of Ethylene and Conjugated Dienes Catalyzed by Half-sandwich Scandium Complexes[J]. Acta Polymerica Sinica, 2019,50(8):826-833. DOI: 10.11777/j.issn1000-3304.2019.19020.
采用(C
5
Me
4
SiMe
3
)Sc(CH
2
C
6
H
4
NMe
2
-
o
)
2
(
1
)、(C
5
Me
4
SiMe
3
)Sc(CH
2
SiMe
3
)
2
(THF) (
2
) 2种单茂钪催化剂,考察了其催化乙烯与共轭二烯烃异戊二烯、丁二烯共聚合的性能,并通过
1
H-NMR、
13
C-NMR、GPC和DSC对所获共聚物的微观结构和热性能进行了分析. 结果表明,在室温1.01 × 10
5
Pa 乙烯压力下,改变共轭二烯烃的用量,2种单茂钪对乙烯与共轭二烯烃共聚合均表现了极高的催化活性(10
5
g polymer mol
Sc
−1
h
−1
),获得了组成可控(乙烯含量32 mol% ~ 79 mol%)、高分子量(
M
n
= 8.0 × 10
4
~ 19.7 × 10
4
)、窄分布(
M
w
/
M
n
= 1.11 ~ 1.32)的乙烯-异戊二烯和乙烯-丁二烯共聚物,催化剂和共轭二烯烃结构直接影响共聚物的序列分布和立体选择性. 在乙烯与异戊二烯共聚合中,采用单茂钪
1
获得多嵌段共聚物,共聚物中异戊二烯以3
4-结构单元为主,不同组成的共聚物均含有一个−16 °C左右的玻璃化转变温度(
T
g
)和一个127 °C的熔点(
T
m
);采用单茂钪
2
控制异戊二烯的用量,获得交替共聚物和异戊二烯孤立插入聚乙烯的无规共聚物,共聚物中异戊二烯以3
4-结构单元和反式-1
4-结构单元为主,交替共聚物只具有−46 °C的
T
g
,无规共聚物具有−46 °C的
T
g
和130 °C的
T
m
. 在乙烯与丁二烯共聚合中,采用单茂钪
1
和
2
均获得乙烯-丁二烯多嵌段共聚物,共聚物中丁二烯以顺式-1
4-结构单元为主,由单茂钪
2
获得的乙烯-丁二烯共聚物的序列无规程度高于单茂钪
1,
不同组成的共聚物具有一个−98 °C左右的
T
g
和一个71 ~ 125 °C左右的
T
m
.
The copolymerization of ethylene with conjugated dienes such as isoprene and butadiene catalyzed by the half-sandwich scandium complexes (C
5
Me
4
SiMe
3
)Sc(CH
2
C
6
H
4
NMe
2
-
o
)
2
(
1
) and (C
5
Me
4
SiMe
3
) Sc(CH
2
SiMe
3
)
2
(THF) (
2
) has been detailedly studied. Microstructures and thermal properties of the copolymers obtained were characterized by NMR
GPC and DSC. Results showed that ethylene could be copolymerized with either isoprene or butadiene under 1.01 × 10
5
Pa of ethylene
and the copolymerization activity both reached up to 10
5
g polymer mol
Sc
−1
h
−1
at room temperature. The ethylene-isoprene and ethylene-butadiene copolymers with controllable compositions (ethylene content = 32 mol% − 79 mol%)
high molecular weight (
M
n
= 8.0 × 10
4
~ 19.7 × 10
4
)
and narrow molecular weight distribution (
M
w
/
M
n
= 1.11 − 1.32) were readily obtained by changing the feed ratio of isoprene or butadiene. The structures of catalysts and conjugated dienes could exert significant effects on the stereoselectivity and comonomer distribution sequences in the resulting copolymers. For the copolymerization of ethylene and isoprene
scandium complex
1
afforded multiblock ethylene-isoprene copolymers with different isoprene contents but a predominant 3
4-structure. These copolymers exhibited a glass transition temperature (
T
g
about −16 °C) and a melting temperature
(
T
m
127 °C)
which originated from the attributes of polyisoprene blocks and polyethylene blocks
respectively. Scandium complex
2
could give alternating ethylene-isoprene copolymers or random ethylene-isoprene copolymers with polyethylene blocks and isolated isoprene units at high or low amount of isoprene monomer used
and the isoprene in these copolymers mainly existed in 3
4-structure and
trans
-1
4-structure. The ethylene-isoprene alternating copolymers only showed a
T
g
at −46 °C
but as the isoprene content was lower than 32 mol%
T
m
that derived from polyethylene blocks appeared at 130 °C while
T
g
of −46 °C still existed due to the ethylene-isoprene alternating structures. As for the copolymerization of ethylene and butadiene
both scandium complexes
1
and
2
afforded multiblock ethylene-butadiene copolymers with different butadiene contents and predominant
cis
-1
4-structure
whereas the random degree of sequence distributions in copolymers prepared by
2
was higher than that in copolymers prepared by
1
. Moreover
these ethylene-butadiene copolymers displayed
T
g
s (−98 °C) and
T
m
s (71 − 125 °C) simultaneously
which were ascribed to polybutadiene blocks and polyethylene blocks
respectively.
钪乙烯异戊二烯丁二烯共聚合
ScandiumEthyleneIsopreneButadieneCopolymerization
Woodman T J, Sarazin Y, Fink G, Hauschild K, Bochmann M. Macromolecules , 2005 . 38 3060 - 3067 . DOI:10.1021/ma047454rhttp://doi.org/10.1021/ma047454r .
Ishihara T, Shiono T. J Am Chem Soc , 2005 . 127 5774 - 5775 . DOI:10.1021/ja050987ahttp://doi.org/10.1021/ja050987a .
Tobisch S. J Mol Struct Theochem , 2006 . 771 171 - 179 . DOI:10.1016/j.theochem.2006.03.036http://doi.org/10.1016/j.theochem.2006.03.036 .
Furukawa J. J Polym Sci, Part B: Polym Phys , 1972 . 10 3027 - 3036 . DOI:10.1002/pol.1972.170101020http://doi.org/10.1002/pol.1972.170101020 .
Soga K, Chen S I, Ohnishi R. Polym Bull , 1982 . 8 473 - 478 . DOI:10.1007/BF00265270http://doi.org/10.1007/BF00265270 .
Sun L, Lu Z, Lin S. J Polym Sci, Part B: Polym Phys , 1988 . 26 2113 - 2126.
Mullhaupt R, Ovenall D W, Ittel S D. J Polym Sci, Part A: Polym Chem , 1988 . 26 2496 - 2499.
Zhou Guangyuan(周光远), Huang Baotong(黄葆同), Jin Guoxin(金国新). Appl Chem(应用化学) , 2001 . ( 18 ): 125 - 127.
Bruzzone M, Carbonaro A, Corno C. Makromol Chem , 1978 . 179 2173 - 2185 . DOI:10.1002/macp.1978.021790906http://doi.org/10.1002/macp.1978.021790906 .
Cucinella S, De Chirico A, Mazzei A. Eur Polym J , 1976 . 12 65 - 70 . DOI:10.1016/0014-3057(76)90139-7http://doi.org/10.1016/0014-3057(76)90139-7 .
Natta G, Zambelli A, Pasquon I, Ciampelli F. Makromol Chem , 1964 . 79 161 - 168 . DOI:10.1002/macp.1964.020790115http://doi.org/10.1002/macp.1964.020790115 .
Kaminsky W, Schobohm M. Makromol Chem Macromol Symp , 1986 . 4 103 - 118 . DOI:10.1002/(ISSN)1521-3900ahttp://doi.org/10.1002/(ISSN)1521-3900a .
Barbotin F, Monteil V, Llauro M F, Boisson C, Spitz R. Macromolecules , 2000 . 33 8521 - 8523 . DOI:10.1021/ma0012043http://doi.org/10.1021/ma0012043 .
Thuilliez J, Monteil V, Spitz R, Boisson C. Angew Chem Int Ed , 2005 . 44 2593 - 2595 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773 .
Wu C J, Liu B, Lin F, Wang M Y, Cui D M. Angew Chem Int Ed , 2017 . 56 6975 - 6979 . DOI:10.1002/anie.201702128http://doi.org/10.1002/anie.201702128 .
Rodrigues A S, Kirillov E, Vuillemin B, Razavi A, Carpentier J F. Polymer , 2008 . 49 2039 - 2045 . DOI:10.1016/j.polymer.2008.02.043http://doi.org/10.1016/j.polymer.2008.02.043 .
Li X F, Nishiura M, Hu L H, Mori K, Hou Z M. J Am Chem Soc , 2009 . 131 13870 - 13882 . DOI:10.1021/ja9056213http://doi.org/10.1021/ja9056213 .
Du G X, Xue J P, Peng D Q, Yu C, Wang H H, Zhou Y N, Bi J J, Zhang S W, Dong Y P, Li X F. J Polym Sci, Part A: Polym Chem , 2015 . 53 2898 - 2907 . DOI:10.1002/pola.v53.24http://doi.org/10.1002/pola.v53.24 .
Ren X R, Guo F, Fu H R, Song Y Y, Li Y, Hou Z M. Polym Chem , 2018 . 9 1223 - 1233 . DOI:10.1039/C8PY00039Ehttp://doi.org/10.1039/C8PY00039E .
Luo Y, Baldamus J, Hou Z M. J Am Chem Soc , 2004 . 126 13910 - 13911 . DOI:10.1021/ja046063phttp://doi.org/10.1021/ja046063p .
Li X, Nishiura M, Mori K, Mashiko T, Hou Z M. Chem Commun, 2007, 4137–4139
Guo F, Nishiura M, Koshino H, Hou Z M. Macromolecules , 2011 . 44 6335 - 6344 . DOI:10.1021/ma201271rhttp://doi.org/10.1021/ma201271r .
Chiem J C W, Tsai W M, Rausch M D. J Am Chem Soc , 1991 . 113 8570 - 8571 . DOI:10.1021/ja00022a081http://doi.org/10.1021/ja00022a081 .
Meng Rui(孟蕊), Guo Fang(郭方), Shi Zhenghai(史正海), Li Yang(李杨). Acta Polymerica Sinica(高分子学报) , 2015 . ( 10 ): 1189 - 1195 . DOI:10.11777/j.issn1000-3304.2015.15062http://doi.org/10.11777/j.issn1000-3304.2015.15062 .
Shi Zhenghai(史正海), Meng Rui(孟蕊), Guo Fang(郭方). Acta Polymerica Sinica(高分子学报) , 2014 . ( 10 ): 1420 - 1427 . DOI:10.11777/j.issn1000-3304.2014.14057http://doi.org/10.11777/j.issn1000-3304.2014.14057 .
0
浏览量
29
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构