浏览全部资源
扫码关注微信
中国科学技术大学国家同步辐射实验室 安徽省先进功能高分子薄膜工程实验室 合肥 230026
E-mail: zhangwh@ustc.edu.cn Wen-hua Zhang, E-mail: zhangwh@ustc.edu.cn
纸质出版日期:2019-8,
网络出版日期:2019-4-17,
收稿日期:2019-1-29,
修回日期:2019-2-27,
扫 描 看 全 文
孙蕾, 赵敬楠, 黄伟恒, 张文华, 李良彬. 溶液溶度对共轭高分子溶液中分子链有序-无序转变的影响研究[J]. 高分子学报, 2019,50(8):834-840.
Lei Sun, Jing-nan Zhao, Wei-heng Huang, Wen-hua Zhang, Liang-bin Li. Effect of Solution Concentration on Order-disorder Transition of Molecular Chains in Conjugated Polymer Solutions[J]. Acta Polymerica Sinica, 2019,50(8):834-840.
孙蕾, 赵敬楠, 黄伟恒, 张文华, 李良彬. 溶液溶度对共轭高分子溶液中分子链有序-无序转变的影响研究[J]. 高分子学报, 2019,50(8):834-840. DOI: 10.11777/j.issn1000-3304.2019.19023.
Lei Sun, Jing-nan Zhao, Wei-heng Huang, Wen-hua Zhang, Liang-bin Li. Effect of Solution Concentration on Order-disorder Transition of Molecular Chains in Conjugated Polymer Solutions[J]. Acta Polymerica Sinica, 2019,50(8):834-840. DOI: 10.11777/j.issn1000-3304.2019.19023.
利用光致发光谱(PL)和紫外-可见吸收光谱(UV-Vis),结合同步辐射X射线散射技术及原子力显微镜(AFM),研究了室温下浓度对P3HT/甲苯溶液中共轭高分子链构象的影响及薄膜形貌与溶液浓度之依赖性. 结果表明:稀溶液(0.1 ~ 5 mg/mL)中P3HT链以独立的无规卷曲线团构象为主,链间相互作用较弱;在临界浓度(~ 5 mg/mL)附近,无规卷曲链发生塌缩,由于链内
π
-
π
相互作用出现局部的棒状链段有序,分子链回转半径变小;超过临界浓度时,溶液中高分子链间相互缠结作用更加明显,分子链间的
π
-
π
堆积导致局部有序聚集程度提高,且分子聚集体的有序程度与浓度呈正相关关系,但分子链构型和回转半径均不再随着浓度升高而发生明显变化. 通过不同浓度P3HT/甲苯溶液的旋涂加工,证实了薄膜结构和形貌与初始溶液中共轭高分子链构象和聚集态有着紧密联系.
The concentration dependence of chain conformation and disorder-order transition of poly(3-hexylthiophene-2
5-diyl) (P3HT) in toluene solution at room temperature are investigated by multiple characterizations including photoluminescence spectroscopy (PL)
UV-Vis absorption spectroscopy (UV-Vis)
synchrotron radiation X-ray scattering technique (SAXS)
and atomic force microscopy (AFM). The results indicate a critical concentration of ~ 5 mg/mL
at which the interchain interaction and chain aggregation state vary pronouncedly. In the dilute solution (
<
5 mg/mL)
P3HT chains maintain as independent random coils with negligible interchain interactions despite of regional segmental aggregate formation within the coils as revealed by PL and SAXS measurements. With the solution concentration exceeding the critical value of 5 mg/mL
the chain collapse takes place and the radius of gyration of the molecular chains decreases due to the strengthened
π
-
π
couplings among coils. The higher concentration of the solution leads to higher interchain entanglement and more local formation of rod-like segmental aggregates. The amount of the local segment aggregation is found to positively correlated with the concentration
while the radius of gyration and chain conformation exhibit nearly no variation any more at the concentrated solutions. SAXS data display a decreased power law of the concentrated solutions with respect to the dilute solutions
suggesting a lower dimension of the form factor and an improved interchain aggregation in the concentrated solution. This is in good agreement with the UV absorption and PL results. This concentration dependence of the regional chain disorder-order transition in P3HT/toluene solution is further verified to exert great influence on the final crystalline morphologies of the spin-casted films. The segmental aggregated orderings in solution can be effectively transferred to the thin films through namely the " memory effect” during the solution processing
resulting in nanowire structures and higher crystallinity of the films for the higher concentration solution.
共轭高分子组分浓度聚集状态链构象回转半径
Conjugated polymerComponent concentrationAggregation stateChain conformationRadius of gyration
Liu X C, Nian L, Gao K, Zhang L J, Qing L C, Wang Z, Ying L, Xie Z Q, Ma Y G, Cao Y, Liu F, Chen J W. J Mater Chem A , 2017 . 5 ( 33 ): 17619 - 17631 . DOI:10.1039/C7TA05583Hhttp://doi.org/10.1039/C7TA05583H .
Lu G H, Li L G, Yang X N. Adv Mater , 2007 . 19 ( 21 ): 3594 - 3598 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Marrocchi A, Lanari D, Facchetti A, Vaccaro L. Energy Environ Sci , 2012 . 5 ( 9 ): 8457 - 8474 . DOI:10.1039/c2ee22129bhttp://doi.org/10.1039/c2ee22129b .
Wang Y, Cui H N, Zhu M J, Qiu F, Peng J, Lin Z Q. Macromolecules , 2017 . 50 ( 24 ): 9674 - 9682 . DOI:10.1021/acs.macromol.7b02126http://doi.org/10.1021/acs.macromol.7b02126 .
Zhu M J, Kim H, Jang Y J, Park S, Ryu D Y, Kim K, Tang P, Qiu F, Kim D H, Peng J. J Mater Chem A , 2016 . 4 ( 47 ): 18432 - 18443 . DOI:10.1039/C6TA08181Ahttp://doi.org/10.1039/C6TA08181A .
Shi Y, Liu J, Yang Y. J Appl Phys , 2000 . 87 ( 9 ): 4254 - 4263 . DOI:10.1063/1.373062http://doi.org/10.1063/1.373062 .
Lu L, Zheng T, Wu Q, Schneider A M, Zhao D, Yu L. Chem Rev , 2015 . 115 ( 23 ): 12666 - 12731 . DOI:10.1021/acs.chemrev.5b00098http://doi.org/10.1021/acs.chemrev.5b00098 .
Jung B, Kim K, Eom Y, Kim W. ACS Appl Mater Interfaces , 2015 . 7 ( 24 ): 13342 - 13349 . DOI:10.1021/acsami.5b01658http://doi.org/10.1021/acsami.5b01658 .
Peet J, Soci C, Coffin R C, Nguyen T Q, Mikhailovsky A, Moses D, Bazan G C. Appl Phys Lett , 2006 . 89 ( 25 ): 252105 DOI:10.1063/1.2408661http://doi.org/10.1063/1.2408661 .
Shahar C, Dutta S, Weissman H, Shimon L J, Ott H, Rybtchinski B. Angew Chem , 2016 . 128 ( 1 ): 187 - 190 . DOI:10.1002/ange.201507659http://doi.org/10.1002/ange.201507659 .
Erdemir D, Lee A Y, Myerson A S. Acc Chem Res , 2009 . 42 ( 5 ): 621 - 629 . DOI:10.1021/ar800217xhttp://doi.org/10.1021/ar800217x .
Gebauer D, Kellermeier M, Gale J D, Bergström L, Cölfen H. Chem Soc Rev , 2014 . 43 ( 7 ): 2348 - 2371 . DOI:10.1039/C3CS60451Ahttp://doi.org/10.1039/C3CS60451A .
Panzer F, Bässler H, Köhler A. J Phys Chem Lett , 2016 . 8 ( 1 ): 114 - 125.
Reichenberger M, Kroh D, Matrone G M, Schötz K, Pröller S, Filonik O, Thordardottir M E, Herzig E M, Bässler H, Stingelin N, köhler A. J Polym Sci, Part B: Polym Phys , 2018 . 56 ( 6 ): 532 - 542 . DOI:10.1002/polb.24562http://doi.org/10.1002/polb.24562 .
Schwartz B J. Annu Rev Phys Chem , 2003 . 54 141 - 172 . DOI:10.1146/annurev.physchem.54.011002.103811http://doi.org/10.1146/annurev.physchem.54.011002.103811 .
Mukherji D, Wagner M, Watson M D, Winzen S, de Oliveira T E, Marques C M, Kremer K. Soft Matter , 2017 . 13 ( 12 ): 2292 - 2294 . DOI:10.1039/C7SM00041Chttp://doi.org/10.1039/C7SM00041C .
Zhao Y, Yuan G X, Roche P, Leclerc M. Polymer , 1995 . 36 ( 11 ): 2211 - 2214 . DOI:10.1016/0032-3861(95)95298-Fhttp://doi.org/10.1016/0032-3861(95)95298-F .
Zhou K, Liu J G, Li M G, Yu X H, Xing R B, Han Y C. J Phys Chem C , 2015 . 119 ( 4 ): 1729 - 1736 . DOI:10.1021/jp511370xhttp://doi.org/10.1021/jp511370x .
Peng Y, He Z Q, Li H, Liang C J. Polymer , 2016 . 98 ( 1 ): 61 - 69.
Traiphol R, Sanguansat P, Srikhirin T, Kerdcharoen T, Osotchan T. Macromolecules , 2006 . 39 ( 3 ): 1165 - 1172 . DOI:10.1021/ma052512+http://doi.org/10.1021/ma052512+ .
Cheng P, Yan C, Li Y, Ma W, Zhan X, Science E. Energy Environ Sci , 2015 . 8 ( 8 ): 2357 - 2364 . DOI:10.1039/C5EE01838Bhttp://doi.org/10.1039/C5EE01838B .
Nguyen T Q, Doan V, Schwartz B J. J Chem Phys , 1999 . 110 ( 8 ): 4068 - 4078 . DOI:10.1063/1.478288http://doi.org/10.1063/1.478288 .
Grell M, Bradley D, Long X, Chamberlain T, Inbasekaran M, Woo E, Soliman M. Acta Polym , 1998 . 49 ( 8 ): 439 - 444 . DOI:10.1002/(ISSN)1521-4044http://doi.org/10.1002/(ISSN)1521-4044 .
Greenham N C, Peng X, Alivisatos A P. Phys Rev B , 1996 . 54 ( 24 ): 17628 DOI:10.1103/PhysRevB.54.17628http://doi.org/10.1103/PhysRevB.54.17628 .
Wang J, Wang D, Miller E K, Moses D, Bazan G C, Heeger A J. Macromolecules , 2000 . 33 ( 14 ): 5153 - 5158 . DOI:10.1021/ma000081jhttp://doi.org/10.1021/ma000081j .
Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, Yin S, Chen Y S, Wei J. Adv Funct Mater , 2009 . 19 ( 6 ): 894 - 904 . DOI:10.1002/adfm.v19:6http://doi.org/10.1002/adfm.v19:6 .
Ridolfi G, Favaretto L, Barbarella G, Samorì P, Camaioni N. J Mater Chem , 2005 . 15 ( 17 ): 1704 - 1707 . DOI:10.1039/b418109chttp://doi.org/10.1039/b418109c .
Clark J, Silva C, Friend R H, Spano F C. Phys Rev Lett , 2007 . 98 ( 20 ): 206406 DOI:10.1103/PhysRevLett.98.206406http://doi.org/10.1103/PhysRevLett.98.206406 .
Kuei B, Gomez E D. Soft Matter , 2017 . 13 ( 1 ): 49 - 67 . DOI:10.1039/C6SM00979Dhttp://doi.org/10.1039/C6SM00979D .
Aime J, Bargain F, Fave J, Rawiso M, Schott M. J Chem Phys , 1988 . 89 ( 10 ): 6477 - 6483 . DOI:10.1063/1.455367http://doi.org/10.1063/1.455367 .
Bauer B J, Hobbie E K, Becker M L J M. Macromolecules , 2006 . 39 ( 7 ): 2637 - 2642 . DOI:10.1021/ma0527303http://doi.org/10.1021/ma0527303 .
Li Y C, Chen K B, Chen H L, Hsu C S, Tsao C S, Chen J H, Chen S A. Langmuir , 2006 . 22 ( 26 ): 11009 - 11015 . DOI:10.1021/la0612769http://doi.org/10.1021/la0612769 .
0
浏览量
43
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构