浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
E-mail: guangsu-huang@hotmail.com Guang-su Huang, E-mail: guangsu-huang@hotmail.com
E-mail: wujinrong@scu.edu.cn Jin-rong Wu, E-mail: wujinrong@scu.edu.cn
纸质出版日期:2019-5,
网络出版日期:2019-4-11,
收稿日期:2019-2-1,
修回日期:2019-3-17,
扫 描 看 全 文
黄鑫, 刘汉超, 樊正, 王豪, 黄光速, 吴锦荣. 超支化聚合物增韧增强的自修复环氧Vitrimer[J]. 高分子学报, 2019,50(5):535-542.
Xin Huang, Han-chao Liu, Zheng Fan, Hao Wang, Guang-su Huang, Jin-rong Wu. Hyperbranched Polymer Toughened and Reinforced Self-healing Epoxy Vitrimer[J]. Acta Polymerica Sinica, 2019,50(5):535-542.
黄鑫, 刘汉超, 樊正, 王豪, 黄光速, 吴锦荣. 超支化聚合物增韧增强的自修复环氧Vitrimer[J]. 高分子学报, 2019,50(5):535-542. DOI: 10.11777/j.issn1000-3304.2019.19027.
Xin Huang, Han-chao Liu, Zheng Fan, Hao Wang, Guang-su Huang, Jin-rong Wu. Hyperbranched Polymer Toughened and Reinforced Self-healing Epoxy Vitrimer[J]. Acta Polymerica Sinica, 2019,50(5):535-542. DOI: 10.11777/j.issn1000-3304.2019.19027.
针对环氧树脂Vitrimer脆性大和强度低的缺点,采用羧酸封端的超支化聚合物Hyper C102来增强增韧戊二酸固化的双酚F环氧树脂(BPF). 傅里叶红外线光谱(FTIR)测试和溶胀实验证明了环氧树脂Vitrimer中共价交联网络的形成. 示差扫描量热法(DSC)和动态热机械性能分析(DMA)测试材料的酯交换速率和动态力学性能,发现Hyper C102改性的环氧树脂Vitrimer在高温下仍然可以发生高效率的酯交换反应,材料的模量可在30 min内松弛到初始模量的1/e. 力学性能测试表明Hyper C102改性环氧树脂Vitrimer的拉伸强度和断裂能分别提高了136%和504%,并拥有着良好的自修复和可重复加工性能. 因此,采用羧酸封端的超支化聚合物改性不仅可以保持环氧树脂Vitrimer的动态酯交换特性,还可以极大地改善其力学性能.
Unlike conventional thermoset epoxy resins
epoxy vitrimers with excellent malleability can be recycled
remolded and reshaped. However
most epoxy vitrimers usually shows high fragility and low mechanical properties
which significantly limits their practical applications. To address this issue
we used a carboxyl terminated hyperbranched polymer
Hyper C102
to simultaneously toughen and reinforce a class of vitrimers based on glutaric acid crosslinked bisphenol F epoxy resin (BPF)
in which 1-methylimidazole was used as catalyst to endow the system with dynamic exchange properties. Fourier transform (FTIR) and swelling experiments confirmed the formation of covalent crosslinking network in the epoxy vitrimers. DSC and DMA were used to study the dynamic mechanical properties and the rate of transesterification reaction of the materials. The result shows that the crosslink density of the epoxy vitrimers decreases first and then increases with the increasing content of Hyper C102. Such phenomenon can be well explained by the cavitation theory. More intriguingly
the Hyper C102 modified epoxy vitrimers still show high efficiency of transesterification reaction at 180 °C. Their modulus can relax to 1/e of the initial modulus within 30 min
and to 10% of the initial modulus within 1 h. Meanwhile
the tensile strength and strain at break can be simultaneously improved upon the introduction of Hyper C102. Compared with Hyper0 which contains no hyperbranched polymer
the tensile strength and fracture energy of Hyper7.5 that contains 7.5 wt% Hyper C102 is improved by 136% (from 28 MPa to 66 MPa) and 504% (from 280 kJ/m
3
to 1410 kJ/m
3
)
respectively. Such significant and simultaneous improvement in both tensile strength and toughness has not been realized in previous studies. Moreover
the epoxy vitrimers manifest decent self-repairing and recyclable properties after mechanical damage. These results fully demonstrate that the addition of the carboxyl terminated hyperbranched polymer can not only maintain the dynamic transesterification
but also significantly improve the mechanical properties of epoxy vitrimers.
环氧树脂Vitrimer酯交换反应超支化聚合物增韧自修复
Epoxy vitrimerTransesterification reactionHyperbranched polymerTougheningSelf-healing
Chen Ping(陈平), Liu Shengping(刘胜平), Wang Dezhong(王德中). Epoxy Resin and Its Applications(环氧树脂及其应用). Beijing(北京): Chemical Industry Press(化学工业出版社), 2011. 1-5
Min D, Zhou W, Qing Y . J Mater Sci , 2017 . 52 ( 4 ): 2373 - 2383 . DOI:10.1007/s10853-016-0532-1http://doi.org/10.1007/s10853-016-0532-1 .
Zhao Hanwen(赵翰文), Feng Libang(冯利邦), Shi Xueting(史雪婷) . 高分子学报 , Acta Polymerica Sinica , 2018 . ( 3 ): 395 - 401.
Zhao Mengxue(赵梦雪), Kong Miqiu(孔米秋), Liu Chengjun(刘成俊) . 高分子学报 , Acta Polymerica Sinica , 2018 . ( 6 ): 721 - 732.
Liu H, Zhang H, Wang H, Huang X, Huang G, Wu J . Chem Eng J , 2019 . 368 61 - 70 . DOI:10.1016/j.cej.2019.02.177http://doi.org/10.1016/j.cej.2019.02.177 .
Montarnal D, Capelot M, Tournilhac F, Leibler L . Science , 2011 . 334 ( 6058 ): 965 - 968 . DOI:10.1126/science.1212648http://doi.org/10.1126/science.1212648 .
Legrand A, Souliéziakovic C . Macromolecules , 2016 . 49 ( 16 ): 5893 - 5902 . DOI:10.1021/acs.macromol.6b00826http://doi.org/10.1021/acs.macromol.6b00826 .
Capelot M, Montarnal D, Tournilhac F, Leibler L . J Am Chem Soc , 2012 . 134 ( 18 ): 7664 - 7667 . DOI:10.1021/ja302894khttp://doi.org/10.1021/ja302894k .
Brutman J P, Delgado P A, Hillmyer M A . ACS Macro Lett , 2014 . 3 ( 7 ): 607 - 610 . DOI:10.1021/mz500269whttp://doi.org/10.1021/mz500269w .
Demongeot A, Groote R, Goossens H, Hoeks T, Tournilhac F, Leibler L . Macromolecules , 2017 . 50 ( 16 ): 6117 - 6127 . DOI:10.1021/acs.macromol.7b01141http://doi.org/10.1021/acs.macromol.7b01141 .
Denissen W, Rivero G, Nicolaÿ R, Leibler L, Winne J M . Adv Funct Mater , 2015 . 25 ( 16 ): 2451 - 2457 . DOI:10.1002/adfm.201404553http://doi.org/10.1002/adfm.201404553 .
Fortman D J, Brutman J P, Cramer C J, Hillmyer M A, Dichtel W R . J Am Chem Soc , 2015 . 137 ( 44 ): 14019 DOI:10.1021/jacs.5b08084http://doi.org/10.1021/jacs.5b08084 .
Lu Y X, Tournilhac F, Leibler L, Guan Z . J Am Chem Soc , 2012 . 134 ( 20 ): 8424 DOI:10.1021/ja303356zhttp://doi.org/10.1021/ja303356z .
Lu Y X, Guan Z . J Am Chem Soc , 2012 . 134 ( 34 ): 14226 - 14231 . DOI:10.1021/ja306287shttp://doi.org/10.1021/ja306287s .
Obadia M M, Mudraboyina B P, Serghei A, Montarnal D, Drockenmuller E . J Am Chem Soc , 2015 . 137 ( 18 ): 6078 - 6083 . DOI:10.1021/jacs.5b02653http://doi.org/10.1021/jacs.5b02653 .
Zhang Xi(张希) . 高分子学报 , Acta Polymerica Sinica , 2016 . ( 6 ): 685 - 687.
Alaitz R D L, Martin R, Markaide N, Rekondo A, Cabanero G, Rodriguez J, Odriozola I . Mater Horiz , 2016 . 3 ( 3 ): 241 - 247 . DOI:10.1039/C6MH00029Khttp://doi.org/10.1039/C6MH00029K .
Chabert E, Vi al J, Cauchois J P, Tournihac F . Soft Matter , 2016 . 12 ( 21 ): 4838 - 4845 . DOI:10.1039/C6SM00257Ahttp://doi.org/10.1039/C6SM00257A .
Yang Y, Pei Z, Zhang X, Tao L, Wei Y, Ji Y . Chem Sci , 2014 . 5 ( 9 ): 3486 - 3492 . DOI:10.1039/C4SC00543Khttp://doi.org/10.1039/C4SC00543K .
Boogh L, Pettersson B, Manson J A E . Polymer , 1999 . 40 2249 - 2261 . DOI:10.1016/S0032-3861(98)00464-9http://doi.org/10.1016/S0032-3861(98)00464-9 .
Oh J H, Jang J, Lee S H . Polymer , 2001 . 42 ( 20 ): 8339 - 8347 . DOI:10.1016/S0032-3861(01)00365-2http://doi.org/10.1016/S0032-3861(01)00365-2 .
Okazaki M, Murota M, Kawaguchi Y, Tsubokawa N . J Appl Polym Sci , 2001 . 80 ( 4 ): 573 - 579 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628 .
Altuna F I, Hoppe C E, Williams R J J . RSC Adv , 2016 . 6 ( 91 ): 88647 - 88655 . DOI:10.1039/C6RA18010Hhttp://doi.org/10.1039/C6RA18010H .
Hu W, Ren Z, Li J, Askounis E, Xie Z, Pei Q . Adv Funct Mater , 2015 . 25 ( 30 ): 4827 - 4836 . DOI:10.1002/adfm.201501530http://doi.org/10.1002/adfm.201501530 .
Bao C, Guo Z, Sun H, Sun J . ACS Appl Mater Interfaces , 2019 . 11 ( 9 ): 9478 - 9486 . DOI:10.1021/acsami.9b00006http://doi.org/10.1021/acsami.9b00006 .
Ratna D, Varley R, Singh Raman R K . J Appl Polym Sci , 2003 . 38 147 - 154.
Capelot M, Unterlass M M, Tournilhac F, Leibler L . ACS Macro Lett , 2012 . 1 ( 7 ): 789 - 792 . DOI:10.1021/mz300239fhttp://doi.org/10.1021/mz300239f .
Altuna F I, Pettarin V, Williams R J J . Green Chem , 2013 . 15 ( 12 ): 3360 - 3366 . DOI:10.1039/c3gc41384ehttp://doi.org/10.1039/c3gc41384e .
Pei Z, Yang Y, Chen Q, Terentjev E M, Wei Y, Ji Y . Nat Mater , 2014 . 13 ( 1 ): 36 - 41 . DOI:10.1038/nmat3812http://doi.org/10.1038/nmat3812 .
Yu K, Taynton P, Zhang W, Dunn M L, Qi H J . RSC Adv , 2014 . 4 ( 89 ): 48682 - 48690 . DOI:10.1039/C4RA06543Chttp://doi.org/10.1039/C4RA06543C .
0
浏览量
111
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构