浏览全部资源
扫码关注微信
华南理工大学工业装备与控制工程系 广东省高分子先进制造技术及装备重点实验室 广州 510640
E-mail: mmhuang@scut.edu.cn Han-xiong Huang, E-mail: mmhuang@scut.edu.cn
纸质出版日期:2019-8,
网络出版日期:2019-4-12,
收稿日期:2019-2-4,
修回日期:2019-3-2,
扫 描 看 全 文
郭凯强, 黄汉雄. 较高注射速度下微孔注塑发泡电器盒子的泡孔结构和翘曲[J]. 高分子学报, 2019,50(8):850-856.
Kai-qiang Guo, Han-xiong Huang. Cellular Structure and Warpage of Microcellular Injection Molded Electrical Boxes Fabricated at Higher Injection Speeds[J]. Acta Polymerica Sinica, 2019,50(8):850-856.
郭凯强, 黄汉雄. 较高注射速度下微孔注塑发泡电器盒子的泡孔结构和翘曲[J]. 高分子学报, 2019,50(8):850-856. DOI: 10.11777/j.issn1000-3304.2019.19030.
Kai-qiang Guo, Han-xiong Huang. Cellular Structure and Warpage of Microcellular Injection Molded Electrical Boxes Fabricated at Higher Injection Speeds[J]. Acta Polymerica Sinica, 2019,50(8):850-856. DOI: 10.11777/j.issn1000-3304.2019.19030.
采用以超临界氮气为物理发泡剂的微孔注塑发泡技术,成型聚丙烯(PP)电器盒子,定量研究2种较高注射速度(250和290 mm/s)对盒子泡孔结构、未发泡皮层厚度和翘曲的影响,根据数值模拟所得模腔厚度上温度、剪切速率、黏度和压力的分布,分析盒子泡孔结构和皮层的形成机理. 结果表明,PP盒子壁内芯层形成了直径较小(小于90 μm)的微孔,这主要归因于较高注射速度使模腔内熔体的压降速率和剪切速率提高,促进泡孔的成核. 较高剪切应力和较低熔体温度的综合作用,使得靠近皮层处形成形状较规则的小泡孔区(直径小于20 μm). 研究发现,盒子侧壁沿充模方向,泡孔的密度与平均直径之间服从指数规律,皮层厚度近似线性地增加,后者归因于相应的表面温度近似线性地降低. 注射速度由250 mm/s提高至290 mm/s时,盒子开口端的翘曲有所减小. 研究表明较致密均匀的泡孔结构和较薄的皮层有助于减小微孔注塑制品的翘曲.
A series of microcellular polypropylene (PP) electrical boxes were fabricated by microcellular injection molding with supercritical nitrogen (Sc-N
2
) as the physical foaming agent. The effects of higher injection speeds (250 and 290 mm/s) on the cellular structure
unfoamed skin layer thickness
and warpage of the microcellular boxes were quantitatively investigated. According to the simulated gapwise distributions of shear rate
temperature
viscosity
and pressure of PP melt/Sc-N
2
solution at the last moment of the filling stage in the molding of the PP boxes
the formation mechanisms of cellular structure and skin layer within the walls of the boxes were analyzed in detail. It was demonstrated that microcellular cells with smaller diameters (less than 90 μm) were developed at the core layer of the boxes. This is mainly because higher injection speeds led to higher pressure drop rate and shear rate
which thereby promoted bubble nucleation. It should be noted that tiny cell area with diameters less than 20 μm and more regular shape appeared near the skin layer of the boxes. This is due to the synthetic effects of higher shear stress combined with lower melt temperature. Along the filling direction
an exponential relationship was found between density and mean diameter of the cells within box sidewall
and the skin layer thickness increased in a nearly linear manner. The latter is mainly attributed to an almost linear decrease in the corresponding surface temperature. Warpages at the open end of the boxes were decreased through increasing the injection speed from 250 mm/s to 290 mm/s. The results demonstrate that more uniform and compact cellular structure as well as thinner unfoamed skin layer is beneficial to lowering the warpage of microcellular injection molded parts. This is worthy of further investigation in the future work.
微孔注塑超临界流体发泡注射速度聚丙烯泡孔结构翘曲变形
Microcellular injection moldingSupercritical fluid foamingInjection speedPolypropyleneCellular structureWarpage
Lee J J, Cha S W. Polym-Plast Technol Eng , 2006 . 45 ( 7 ): 871 - 877 . DOI:10.1080/03602550600611768http://doi.org/10.1080/03602550600611768 .
Rizvi S J A, Bhatnagar N. Int Polym Proc , 2009 . 24 ( 5 ): 399 - 405 . DOI:10.3139/217.2263http://doi.org/10.3139/217.2263 .
Rizvi S J A, Alaei M H, Yadav A, Bhatnagar N. J Cell Plast , 2014 . 50 ( 3 ): 199 - 219 . DOI:10.1177/0021955X14524081http://doi.org/10.1177/0021955X14524081 .
Huang H X, Wang J K. Polym Test , 2008 . 27 ( 4 ): 513 - 519 . DOI:10.1016/j.polymertesting.2008.02.009http://doi.org/10.1016/j.polymertesting.2008.02.009 .
Zhang L, Zhao G Q, Wang G L. Appl Therm Eng , 2017 . 114 484 - 497 . DOI:10.1016/j.applthermaleng.2016.11.180http://doi.org/10.1016/j.applthermaleng.2016.11.180 .
Dong G W, Zhao G Q, Guan Y J, Wang G L, Wang X X. J Appl Polym Sci , 2014 . 131 ( 12 ): 40365 .
Gómez-Gómez J F, Arencón D, Sánchez-Soto M A, Martínez A B. J Cell Plast , 2013 . 49 ( 1 ): 47 - 63 . DOI:10.1177/0021955X12460044http://doi.org/10.1177/0021955X12460044 .
Gómez-Gómez J F, Arencón D, Sánchez-Soto M A, Martínez A B. Adv Polym Technol , 2013 . 32 ( 1 ): E692 - E704.
Li J L, Chen Z L, Wang X Z, Liu T, Zhou Y F, Luo S K. J Appl Polym Sci , 2013 . 130 ( 6 ): 4171 - 4181 . DOI:10.1002/app.v130.6http://doi.org/10.1002/app.v130.6 .
Bledzki A K, Kirschling H, Rohleder M, Chate A. J Cell Plast , 2012 . 48 ( 4 ): 301 - 340 . DOI:10.1177/0021955X12441193http://doi.org/10.1177/0021955X12441193 .
Huang Hanxiong(黄汉雄), Yang Xing(杨杏), Xiao Chenglong(肖成龙). Acta Polymerica Sinica(高分子学报) , 2016 . ( 7 ): 903 - 909 . DOI:10.11777/j.issn1000-3304.2016.15335http://doi.org/10.11777/j.issn1000-3304.2016.15335 .
Xi Z H, Sha X Y, Liu T, Zhao L. J Cell Plast , 2014 . 50 ( 5 ): 489 - 505 . DOI:10.1177/0021955X14528931http://doi.org/10.1177/0021955X14528931 .
Huang H X, Tian J D, Guan W S. Polym Eng Sci , 2014 . 54 ( 2 ): 327 - 335 . DOI:10.1002/pen.v54.2http://doi.org/10.1002/pen.v54.2 .
Lang Jianlin(郎建林), Wang Tao(王韬), Ge Yong(葛勇), Li Lei(厉蕾), Yan Yue(颜悦). Acta Polymerica Sinica(高分子学报) , 2017 . ( 6 ): 999 - 1007 . DOI:10.11777/j.issn1000-3304.2017.16282http://doi.org/10.11777/j.issn1000-3304.2017.16282 .
Hwang S S, Ke Z S. Int Commun Heat Mass Transf , 2008 . 35 ( 3 ): 263 - 275 . DOI:10.1016/j.icheatmasstransfer.2007.08.015http://doi.org/10.1016/j.icheatmasstransfer.2007.08.015 .
Hwang S S, Hsu P P, Chiang C W. Int Commun Heat Mass Transf , 2008 . 35 ( 6 ): 735 - 743 . DOI:10.1016/j.icheatmasstransfer.2008.02.011http://doi.org/10.1016/j.icheatmasstransfer.2008.02.011 .
Kramschuster A, Cavitt R, Ermer D, Chen Z B, Turng L S. Polym Eng Sci , 2005 . 45 ( 10 ): 1408 - 1418 . DOI:10.1002/(ISSN)1548-2634http://doi.org/10.1002/(ISSN)1548-2634 .
Kramschuster A, Cavitt R, Ermer D, Chen Z B, Turng L S. Plast Rubber Compos , 2006 . 35 ( 5 ): 198 - 209 . DOI:10.1179/174328906X128199http://doi.org/10.1179/174328906X128199 .
Shen C, Kramschuster A, Ermer D, Turng L S. Int Polym Process , 2006 . 21 ( 4 ): 393 - 401 . DOI:10.3139/217.0122http://doi.org/10.3139/217.0122 .
Yoon J D, Cha S W, Chong T H, Ha Y W. Polym-Plast Technol Eng , 2007 . 46 ( 9 ): 815 - 820 . DOI:10.1080/03602550701278046http://doi.org/10.1080/03602550701278046 .
Han S, Kennedy P, Zheng R, Xu J, Kishbaugh L. J Cell Plast , 2003 . 39 ( 6 ): 475 - 485 . DOI:10.1177/0021955X03039214http://doi.org/10.1177/0021955X03039214 .
Yuan M J, Turng L S. Polymer , 2005 . 46 ( 18 ): 7273 - 7292 . DOI:10.1016/j.polymer.2005.06.054http://doi.org/10.1016/j.polymer.2005.06.054 .
Xiao C L, Huang H X, Yang X. Appl Therm Eng , 2016 . 100 478 - 489 . DOI:10.1016/j.applthermaleng.2016.02.045http://doi.org/10.1016/j.applthermaleng.2016.02.045 .
Xu J Y. Microcellular Injection Molding. New Jersey: Wiley, 2010. 48 – 50
0
浏览量
18
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构