浏览全部资源
扫码关注微信
中国科学院软物质化学重点实验室 中国科学技术大学高分子科学与工程系 合肥 230026
[ "刘世勇,男,1972年生. 中国科学技术大学高分子科学与工程系教授. 1993年、1996年分别获得武汉大学环境化学和高分子化学与物理专业学士、硕士学位. 2000年获复旦大学高分子科学系博士学位,其后分别在英国Sussex University和美国University of Delaware从事博士后研究. 2003年12月至今在中国科学技术大学工作. 曾获中国科学院百人计划(2003年)、国家杰出青年科学基金(2004年)和教育部“长江学者奖励计划”特聘教授 (2009年)等项目资助. 现担任美国化学会Chem. Mater.期刊和Chinese J. Polym. Sci.期刊副主编. 研究领域:针对单分子光刻胶,纳米/生物界面蛋白质冠调控,功能性蛋白质药物高效递送等应用目标,创新发展功能材料合成化学和超分子聚集体微结构调控策略" ]
纸质出版日期:2019-6,
网络出版日期:2019-4-26,
收稿日期:2019-2-10,
修回日期:2019-3-26,
扫 描 看 全 文
姚陈志, 汪枭睿, 胡进明, 刘世勇. 高分子囊泡渗透性与微结构协同调控[J]. 高分子学报, 2019,50(6):553-566.
Chen-zhi Yao, Xiao-rui Wang, Jin-ming Hu, Shi-yong Liu. Cooperative Modulation of Bilayer Permeability and Microstructures of Polymersomes[J]. Acta Polymerica Sinica, 2019,50(6):553-566.
姚陈志, 汪枭睿, 胡进明, 刘世勇. 高分子囊泡渗透性与微结构协同调控[J]. 高分子学报, 2019,50(6):553-566. DOI: 10.11777/j.issn1000-3304.2019.19031.
Chen-zhi Yao, Xiao-rui Wang, Jin-ming Hu, Shi-yong Liu. Cooperative Modulation of Bilayer Permeability and Microstructures of Polymersomes[J]. Acta Polymerica Sinica, 2019,50(6):553-566. DOI: 10.11777/j.issn1000-3304.2019.19031.
高分子囊泡通常由疏水的双层膜包覆亲水的空腔构成. 这种独特的形貌使得高分子囊泡被广泛地用于构筑人工细胞(器)、纳米反应器和药物递送载体. 为了实现这些功能应用,调控高分子囊泡双层膜的渗透性并保持囊泡结构的稳定性极为重要. 然而传统调控囊泡渗透性的方法步骤相对繁琐、常导致组装体的解离. 本文总结了我们近期在协同调控高分子囊泡稳定性和渗透性方面的研究进展. 首先,提出了“无痕”交联的策略并实现了高分子囊泡渗透性和稳定性的协同增强. 其次,利用多重协同非共价键相互作用,实现了高分子囊泡渗透性的可逆调节. 这些新型的调控策略解决了高分子囊泡结构稳定性和渗透性的矛盾并展现了良好的应用前景.
Polymersomes
also referred to as polymer vesicles
are self-assembled from amphiphilic synthetic polymers
representing a type of hollow nanostructures containing aqueous lumens enclosed by bilayer membranes. This unique hollow and compartmentalized structure has been extensively used in the fabrication of artificial cells
drug carriers
and nanoreactors. Albeit more stable than liposomes
polymersomes exhibit relatively low permeability toward macromolecules
small molecules
ions
and even water molecules. This drawback remarkably hampers the biomedical applications of polymersomes. Thus
it is of crucial importance to regulate the permeability of polymersomes while maintaining structural integrity. Although a number of methods have been proposed to enhance the permeability of polymersomes such as the fabrication of stimuli-responsive polymersomes and the introduction of channel proteins
these procedures suffer from either tedious protocols or disruption of the vesicular structures. In this feature article
we summarize our recent achievements in the (ir)reversible regulation of the permeability of polymersomes. First
we conceived a new concept
termed as " traceless” cross-linking
to synergistically stabilize and permeate polymersomes. This concept originates from photoresponsive polymersomes
in which we found that the photo-caged primary amines underwent inter/intrachain amidation reactions other than protonation reactions within the initially hydrophobic bilayer membranes. Moreover
this robust strategy can be readily extended to other bio-related triggering events such as enzyme and redox. Notably
" traceless” cross-linking generally led to irreversible chemical cross-linking of polymersomes. Thus
in the following section
we showcased the representative examples in reversible modulation the permeability of polymersomes by taking advantage of cooperative noncovalent interactions. These new methodologies successfully resolve the dilemma of the structural stability and bilayer permeability of polymersomes and can be used for the fabrication of smart nanocarriers and nanoreactors. Finally
we give a brief summary and outlook of this emerging field.
无痕交联高分子囊泡稳定性渗透性协同调控
Traceless cross-linkingPolymersomesStabilityPermeabilitySynergistic modulation
Hill J P, Jin W S, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T . Science , 2004 . 304 ( 5676 ): 1481 - 1483 . DOI:10.1126/science.1097789http://doi.org/10.1126/science.1097789 .
Hartgerink J D, Beniash E, Stupp S I . Science , 2001 . 294 ( 5547 ): 1684 - 1688 . DOI:10.1126/science.1063187http://doi.org/10.1126/science.1063187 .
Marguet M, Bonduelle C, Lecommandoux S . Chem Soc Rev , 2013 . 42 ( 2 ): 512 - 529 . DOI:10.1039/C2CS35312Ahttp://doi.org/10.1039/C2CS35312A .
Checot F, Lecommandoux S, Gnanou Y, Klok H A . Angew Chem Int Ed , 2002 . 41 ( 8 ): 1339 - 1343 . DOI:10.1002/1521-3773(20020415)41:8<>1.0.CO;2-Mhttp://doi.org/10.1002/1521-3773(20020415)41:8<>1.0.CO;2-M .
Vanhest J C M, Delnoye D A P, Baars M W P L, Vangenderen M H P, Meijer E W . Science , 1995 . 268 ( 5217 ): 1592 - 1595 . DOI:10.1126/science.268.5217.1592http://doi.org/10.1126/science.268.5217.1592 .
Du J Z, O’Reilly R K . Chem Soc Rev , 2011 . 40 ( 5 ): 2402 - 2416 . DOI:10.1039/c0cs00216jhttp://doi.org/10.1039/c0cs00216j .
Zhu J H, Zhang S Y, Zhang K, Wang X J, Mays J W, Wooley K L, Pochan D J . Nat Commun , 2013 . 4 2297 DOI:10.1038/ncomms3297http://doi.org/10.1038/ncomms3297 .
Li Yaming(李亚明), Liu Shiyong(刘世勇) . 高分子学报 , Acta Polymerica Sinica , 2017 . ( 7 ): 1178 - 1190.
Bai Y, Xie F Y, Tian W . Chinese J Polym Sci , 2018 . 36 ( 3 ): 406 - 416 . DOI:10.1007/s10118-018-2086-yhttp://doi.org/10.1007/s10118-018-2086-y .
Chen S L, Shi P F, Zhang W Q . Chinese J Polym Sci , 2017 . 35 ( 4 ): 455 - 479 . DOI:10.1007/s10118-017-1907-8http://doi.org/10.1007/s10118-017-1907-8 .
Feng X R, Ding J X, Gref R, Chen X S . Chinese J Polym Sci , 2017 . 35 ( 6 ): 693 - 699 . DOI:10.1007/s10118-017-1932-7http://doi.org/10.1007/s10118-017-1932-7 .
Gan Y A, Wang Z D, Lu Z X, Shi Y, Tan H Y, Yan C F . Chinese J Polym Sci , 2018 . 36 ( 6 ): 728 - 735 . DOI:10.1007/s10118-018-2066-2http://doi.org/10.1007/s10118-018-2066-2 .
Jing X W, Huang Z Y, Lu H S, Wang B G . Chinese J Polym Sci , 2018 . 36 ( 1 ): 18 - 24 . DOI:10.1007/s10118-018-2008-zhttp://doi.org/10.1007/s10118-018-2008-z .
Li X X, Huo X, Han H J, Lin S L . Chinese J Polym Sci , 2017 . 35 ( 11 ): 1363 - 1372 . DOI:10.1007/s10118-017-1963-0http://doi.org/10.1007/s10118-017-1963-0 .
Liu D, Wang Y Y, Sun Y C, Han Y Y, Cui J, Jiang W . Chinese J Polym Sci , 2018 . 36 ( 7 ): 888 - 896 . DOI:10.1007/s10118-018-2106-yhttp://doi.org/10.1007/s10118-018-2106-y .
Lu B B, Wei L L, Meng G H, Hou J, Liu Z Y, Guo X H . Chinese J Polym Sci , 2017 . 35 ( 8 ): 924 - 938 . DOI:10.1007/s10118-017-1947-0http://doi.org/10.1007/s10118-017-1947-0 .
Lu X J, Yang X Y, Meng Y, Li S Z . Chinese J Polym Sci , 2017 . 35 ( 4 ): 534 - 546 . DOI:10.1007/s10118-017-1916-7http://doi.org/10.1007/s10118-017-1916-7 .
Lyu X L, Pan H B, Shen Z H, Fan X H . Chinese J Polym Sci , 2018 . 36 ( 7 ): 811 - 821 . DOI:10.1007/s10118-018-2115-xhttp://doi.org/10.1007/s10118-018-2115-x .
Meng F D, Ni Y X, Ji S F, Fu X H, Wei Y H, Sun J, Li Z B . Chinese J Polym Sci , 2017 . 35 ( 10 ): 1243 - 1252 . DOI:10.1007/s10118-017-1959-9http://doi.org/10.1007/s10118-017-1959-9 .
Xu M M, Liu R J, Yan Q . Chinese J Polym Sci , 2018 . 36 ( 3 ): 347 - 365 . DOI:10.1007/s10118-018-2080-4http://doi.org/10.1007/s10118-018-2080-4 .
Xu Y L, Qu A T, Ma R J, Li A, Zhang Z K, Shang Z Q, Zhang Y F, Bu L X, An Y L . Chinese J Polym Sci , 2018 . 36 ( 11 ): 1262 - 1268 . DOI:10.1007/s10118-018-2149-0http://doi.org/10.1007/s10118-018-2149-0 .
Zhang W M, Zhang J, Qiao Z, Yin J . Chinese J Polym Sci , 2018 . 36 ( 3 ): 273 - 287 . DOI:10.1007/s10118-018-2035-9http://doi.org/10.1007/s10118-018-2035-9 .
Zheng C X, Zhao Y, Liu Y . Chinese J Polym Sci , 2018 . 36 ( 3 ): 322 - 346 . DOI:10.1007/s10118-018-2078-yhttp://doi.org/10.1007/s10118-018-2078-y .
Wang X R, Liu G H, Hu J M, Zhang G Y, Liu S Y . Angew Chem Int Ed , 2014 . 53 ( 12 ): 3138 - 3142 . DOI:10.1002/anie.201310589http://doi.org/10.1002/anie.201310589 .
Discher D E, Ortiz V, Srinivas G, Klein M L, Kim Y, David C A, Cai S S, Photos P, Ahmed F . Prog Polym Sci , 2007 . 32 ( 8-9 ): 838 - 857 . DOI:10.1016/j.progpolymsci.2007.05.011http://doi.org/10.1016/j.progpolymsci.2007.05.011 .
Meng F H, Zhong Z Y, Feijen J . Biomacromolecules , 2009 . 10 ( 2 ): 197 - 209 . DOI:10.1021/bm801127dhttp://doi.org/10.1021/bm801127d .
Wang F Y K, Xiao J G, Chen S, Sun H, Yang B, Jiang J H, Zhou X, Du J Z . Adv Mater , 2018 . 30 ( 17 ): 1705674 DOI:10.1002/adma.v30.17http://doi.org/10.1002/adma.v30.17 .
Xiao Y F, Sung H, Du J Z . J Am Chem Soc , 2017 . 139 ( 22 ): 7640 - 7647 . DOI:10.1021/jacs.7b03219http://doi.org/10.1021/jacs.7b03219 .
Wilson D A, Nolte R J M, van Hest J C M . Nat Chem , 2012 . 4 ( 4 ): 268 - 274 . DOI:10.1038/nchem.1281http://doi.org/10.1038/nchem.1281 .
Vriezema D M, Garcia P M L, Oltra N S, Hatzakis N S, Kuiper S M, Nolte R J M, Rowan A E, van Hest J C M . Angew Chem Int Ed , 2007 . 46 ( 39 ): 7378 - 7382 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773 .
Wang X R, Hu J M, Liu G H, Tian J, Wang H J, Gong M, Liu S Y . J Am Chem Soc , 2015 . 137 ( 48 ): 15262 - 15275 . DOI:10.1021/jacs.5b10127http://doi.org/10.1021/jacs.5b10127 .
Yao C, Wang X, Liu G, Hu J, Liu S . Macromolecules , 2016 . 49 ( 21 ): 8282 - 8295 . DOI:10.1021/acs.macromol.6b01374http://doi.org/10.1021/acs.macromol.6b01374 .
Zhu K, Liu G, Zhang G, Hu J, Liu S . Macromolecules , 2018 . 51 ( 21 ): 8530 - 8538 . DOI:10.1021/acs.macromol.8b01653http://doi.org/10.1021/acs.macromol.8b01653 .
Sun Z, Liu G, Hu J, Liu S . Biomacromolecules , 2018 . 19 ( 6 ): 2071 - 2081 . DOI:10.1021/acs.biomac.8b00253http://doi.org/10.1021/acs.biomac.8b00253 .
Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W . Acc Chem Res , 2011 . 44 ( 10 ): 1039 - 1049 . DOI:10.1021/ar200036khttp://doi.org/10.1021/ar200036k .
Bian B, Zhang Y Y, Dong Y C, Wu F, Wang C, Wang S, Xu Y, Liu D S . Sci China Chem , 2018 . 61 ( 12 ): 1568 - 1571 . DOI:10.1007/s11426-018-9309-5http://doi.org/10.1007/s11426-018-9309-5 .
Wu S X, Li J, Liang H, Wang L P, Chen X, Jin G X, Xu X P, Yang H H . Sci China Chem , 2017 . 60 ( 5 ): 628 - 634 . DOI:10.1007/s11426-016-0351-5http://doi.org/10.1007/s11426-016-0351-5 .
Xiao J G, Hu Y, Du J Z . Sci China Chem , 2018 . 61 ( 5 ): 569 - 575 . DOI:10.1007/s11426-017-9209-3http://doi.org/10.1007/s11426-017-9209-3 .
Yang S, Luan Z L, Gao C, Yu J J, Qu D H . Sci China Chem , 2018 . 61 ( 3 ): 306 - 310 . DOI:10.1007/s11426-017-9104-xhttp://doi.org/10.1007/s11426-017-9104-x .
Zhang Y Y, Li M, Li Z H, Li Q, Aldalbahi A, Shi J Y, Wang L H, Fan C H, Zuo X L . Sci China Chem , 2017 . 60 ( 11 ): 1474 - 1480 . DOI:10.1007/s11426-017-9036-0http://doi.org/10.1007/s11426-017-9036-0 .
Zhou Y B, Liu H X, Zhao N, Wang Z M, Michael M Z, Xie N, Tang B Z, Tang Y H . Sci China Chem , 2018 . 61 ( 8 ): 892 - 897 . DOI:10.1007/s11426-018-9287-xhttp://doi.org/10.1007/s11426-018-9287-x .
Discher D E, Eisenberg A . Science , 2002 . 297 ( 5583 ): 967 - 973 . DOI:10.1126/science.1074972http://doi.org/10.1126/science.1074972 .
Broz P, Driamov S, Ziegler J, Ben-Haim N, Marsch S, Meier W, Hunziker P . Nano Lett , 2006 . 6 ( 10 ): 2349 - 2353 . DOI:10.1021/nl0619305http://doi.org/10.1021/nl0619305 .
Kim K T, Cornelissen J J L M, Nolte R J M, van Hest J C M . Adv Mater , 2009 . 21 ( 27 ): 2787 - 2791 . DOI:10.1002/adma.200900300http://doi.org/10.1002/adma.200900300 .
Amstad E, Kim S H, Weitz D A . Angew Chem Int Ed , 2012 . 51 ( 50 ): 12499 - 12503 . DOI:10.1002/anie.201206531http://doi.org/10.1002/anie.201206531 .
Hu J M, Zhang G Q, Liu S Y . Chem Soc Rev , 2012 . 41 ( 18 ): 5933 - 5949 . DOI:10.1039/c2cs35103jhttp://doi.org/10.1039/c2cs35103j .
Yan Q, Wang J B, Yin Y W, Yuan J Y . Angew Chem Int Ed , 2013 . 52 ( 19 ): 5070 - 5073 . DOI:10.1002/anie.201300397http://doi.org/10.1002/anie.201300397 .
Koide A, Kishimura A, Osada K, Jang W D, Yamasaki Y, Kataoka K . J Am Chem Soc , 2006 . 128 ( 18 ): 5988 - 5989 . DOI:10.1021/ja057993rhttp://doi.org/10.1021/ja057993r .
Spulber M, Najer A, Winkelbach K, Glaied O, Waser M, Pieles U, Meier W, Bruns N . J Am Chem Soc , 2013 . 135 ( 24 ): 9204 - 9212 . DOI:10.1021/ja404175xhttp://doi.org/10.1021/ja404175x .
Chambon P, Blanazs A, Battaglia G, Armes S P . Langmuir , 2012 . 28 ( 2 ): 1196 - 1205 . DOI:10.1021/la204539chttp://doi.org/10.1021/la204539c .
Read E S, Armes S P . Chem Commun , 2007 . 43 ( 29 ): 3021 - 3035.
Habault D, Zhang H J, Zhao Y . Chem Soc Rev , 2013 . 42 ( 17 ): 7244 - 7256 . DOI:10.1039/c3cs35489jhttp://doi.org/10.1039/c3cs35489j .
Zhu K, Deng Z, Liu G, Hu J, Liu S . Macromolecules , 2017 . 50 ( 3 ): 1113 - 1125 . DOI:10.1021/acs.macromol.6b02162http://doi.org/10.1021/acs.macromol.6b02162 .
Deng H, Zhong Y, Du M, Liu Q, Fan Z, Dai F, Zhang X . Theranostics , 2014 . 4 ( 9 ): 904 - 918 . DOI:10.7150/thno.9448http://doi.org/10.7150/thno.9448 .
He J, Huang X, Li Y C, Liu Y, Babu T, Aronova M A, Wang S, Lu Z, Chen X, Nie Z . J Am Chem Soc , 2013 . 135 ( 21 ): 7974 - 7984 . DOI:10.1021/ja402015shttp://doi.org/10.1021/ja402015s .
Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, Wang X, Sun X, Aronova M, Niu G, Leapman R D, Nie Z, Chen X . Angew Chem Int Ed , 2013 . 52 ( 52 ): 13958 - 13964 . DOI:10.1002/anie.201308986http://doi.org/10.1002/anie.201308986 .
Wang C, Zhang G Y, Liu G H, Hu J M, Liu S Y . J Control Release , 2017 . 259149 - 159.
Marguet M, Sandre O, Lecommandoux S . Langmuir , 2012 . 28 ( 4 ): 2035 - 2043 . DOI:10.1021/la204018whttp://doi.org/10.1021/la204018w .
Xu W, Ledin P A, Iatridi Z, Tsitsilianis C, Tsukruk V V . Angew Chem Int Ed , 2016 . 55 ( 16 ): 4908 - 4913 . DOI:10.1002/anie.201600383http://doi.org/10.1002/anie.201600383 .
Li Y M, Liu G H, Wang X R, Hu J M, Liu S Y . Angew Chem Int Ed , 2016 . 55 ( 5 ): 1760 - 1764 . DOI:10.1002/anie.201509401http://doi.org/10.1002/anie.201509401 .
Ding Y, Kang Y T, Zhang X . Chem Commun , 2015 . 51 ( 6 ): 996 - 1003 . DOI:10.1039/C4CC05878Jhttp://doi.org/10.1039/C4CC05878J .
Hotamisligil G S . Nature , 2006 . 444 ( 7121 ): 860 - 867 . DOI:10.1038/nature05485http://doi.org/10.1038/nature05485 .
Circu M L, Aw T Y . Free Radical Biol Med , 2010 . 48 ( 6 ): 749 - 762 . DOI:10.1016/j.freeradbiomed.2009.12.022http://doi.org/10.1016/j.freeradbiomed.2009.12.022 .
Deng Z, Qian Y, Yu Y, Liu G, Hu J, Zhang G, Liu S . J Am Chem Soc , 2016 . 138 ( 33 ): 10452 - 10466 . DOI:10.1021/jacs.6b04115http://doi.org/10.1021/jacs.6b04115 .
Cheng R, Feng F, Meng F H, Deng C, Feijen J, Zhong Z Y . J Control Release , 2011 . 152 ( 1 ): 2 - 12 . DOI:10.1016/j.jconrel.2011.01.030http://doi.org/10.1016/j.jconrel.2011.01.030 .
Deng Z Y, Yuan S, Xu R X, Liang H J, Liu S Y . Angew Chem Int Ed , 2018 . 57 ( 29 ): 8896 - 8900 . DOI:10.1002/anie.201802909http://doi.org/10.1002/anie.201802909 .
Che H L, van Hest J C M . J Mater Chem , 2016 . 4 ( 27 ): 4632 - 4647 . DOI:10.1039/C6TB01163Bhttp://doi.org/10.1039/C6TB01163B .
Che H L, Cao S P, van Hest J C M . J Am Chem Soc , 2018 . 140 ( 16 ): 5356 - 5359 . DOI:10.1021/jacs.8b02387http://doi.org/10.1021/jacs.8b02387 .
Yan Q, Zhou R, Fu C K, Zhang H J, Yin Y W, Yuan J Y . Angew Chem Int Ed , 2011 . 50 ( 21 ): 4923 - 4927 . DOI:10.1002/anie.v50.21http://doi.org/10.1002/anie.v50.21 .
Feng A C, Zhan C B, Yan Q, Liu B W, Yuan J Y . Chem Commun , 2014 . 50 ( 64 ): 8958 - 8961 . DOI:10.1039/C4CC03156Chttp://doi.org/10.1039/C4CC03156C .
Hu X L, Zhai S D, Liu G H, Xing D, Liang H J, Liu S Y . Adv Mater , 2018 . 30 ( 21 ): 1706307 DOI:10.1002/adma.v30.21http://doi.org/10.1002/adma.v30.21 .
Liu G H, Shi G H, Sheng H Y, Jiang Y Y, Liang H J, Liu S Y . Angew Chem Int Ed , 2017 . 56 ( 30 ): 8686 - 8691 . DOI:10.1002/anie.v56.30http://doi.org/10.1002/anie.v56.30 .
Liu G H, Zhang G F, Hu J M, Wang X R, Zhu M Q, Liu S Y . J Am Chem Soc , 2015 . 137 ( 36 ): 11645 - 11655 . DOI:10.1021/jacs.5b05060http://doi.org/10.1021/jacs.5b05060 .
Hu X L, Liu G H, Li Y, Wang X R, Liu S Y . J Am Chem Soc , 2015 . 137 ( 1 ): 362 - 368 . DOI:10.1021/ja5105848http://doi.org/10.1021/ja5105848 .
Liu G H, Wang X R, Hu J M, Zhang G Y, Liu S Y . J Am Chem Soc , 2014 . 136 ( 20 ): 7492 - 7497 . DOI:10.1021/ja5030832http://doi.org/10.1021/ja5030832 .
0
浏览量
32
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构