浏览全部资源
扫码关注微信
1.华中农业大学理学院 武汉 430070
2.国家纳米科学中心 中国科学院纳米生物效应与安全性重点实验室 中国科学院纳米科学卓越创新中心 北京 100190
E-mail: zixinyang@mail.hzau.edu.cn
E-mail: wanghao@nanoctr.cn
纸质出版日期:2019-6,
网络出版日期:2019-5-5,
收稿日期:2019-2-25,
修回日期:2019-3-25,
扫 描 看 全 文
吉垒, 张雪豪, 杨子欣, 乔增莹, 王浩. 肿瘤微环境诱导多肽聚合物原位组装行为研究[J]. 高分子学报, 2019,50(6):642-652.
Lei Ji, Xue-hao Zhang, Zi-xin Yang, Zeng-ying Qiao, Hao Wang. Microenvironment-induced
吉垒, 张雪豪, 杨子欣, 乔增莹, 王浩. 肿瘤微环境诱导多肽聚合物原位组装行为研究[J]. 高分子学报, 2019,50(6):642-652. DOI: 10.11777/j.issn1000-3304.2019.19039.
Lei Ji, Xue-hao Zhang, Zi-xin Yang, Zeng-ying Qiao, Hao Wang. Microenvironment-induced
设计合成了一种pH响应型的多肽聚合物,在中性条件下能够以聚合物单链的形式存在,在肿瘤微环境弱酸的刺激下发生聚集,提升入胞能力,从而实现对肿瘤细胞的高效杀伤. 首先,通过迈克尔加成的方法合成了一系列生物相容性较好的
β
-硫代酸酯聚合物,并利用固相合成方法合成了治疗肽和穿膜肽2种多肽. 然后,将治疗肽修饰上一种酸敏感基团,并将2种多肽通过迈克尔加成反应与聚合物共价连接. 得到的多肽聚合物能够在中性水溶液中以单链形式稳定存在,而在pH = 6.5条件下发生聚集. 最后,在细胞层面对多肽聚合物进行研究,发现其在微酸性条件下可以通过内吞作用进入到肿瘤细胞,并具有更高的抗肿瘤能力.
The "
in vivo
self-assembly” strategy was adopted to improve the efficacy of polymer-peptide conjugates (PPCs) in tumor destruction. Briefly
a pH-sensitive PPC was designed and synthesized
which could penetrate deep into the solid tumors as a single chain. Such single chain would subsequently respond to the mildly acidic environment inside the solid tumor and assemble into a ball
thereby acquiring higher internalization capacity and achieving an enhanced therapeutic function. The major work in this research is as follows. First
several
β
-thioester polymers were synthesized
via
a condensation polymerization
and two peptides were produced by solid-phase peptide synthesis. One of the peptides was modified with a pH-sensitive group
cis
-aconitic anhydride
and then as-designed polymer-peptide conjugates were prepared by coupling the peptides with polymers through the Michael addition. The PPC products remained stable in a single stranded form under the neutral aqueous condition but aggregated at pH = 6.5. According to TEM observation
the size of PPCs in a pH = 6.5 solution increased from 17 nm to 88 nm in 12 h due to self-assembly
while no obvious size change was noticed under the pH = 7.4 condition. The PPCs modified with DBD group (PS-KFx-CAA-DBD) were dissolved in PBS at different pHs for FL measurement; the FL intensity was significantly increased at pH = 6.5 but barely changed at pH = 7.4
which verified acid-induced aggregation. The mechanism of peptide cytotoxicity is rooted in the destructive effect of
α
-helix structure on mitochondria membranes. Within 12 h
the content of
α
-helix structure increased slightly from 19.5% to 25.8% at pH = 7.4 but markedly to 58.9% at pH = 6.5. Based on the rapid hydrolysis of PPCs at pH = 6.5
the better recovery of
α
-helix structure implied a higher therapeutic activity. Therefore
this
in vivo
self-assembly strategy enables the peptide nanomaterials to penetrate deeper into the tumor cells and thus endows them with enhanced therapeutic efficacy.
体内自组装pH响应型多肽聚合物肿瘤
In vivo self-assemblypH-sensitivePolymer-peptide conjugatesTumour
Shapira A, Livney Y D, Broxterman H J, Assaraf Y G . Drug Resist Update , 2011 . 14 ( 3 ): 150 - 163 . DOI:10.1016/j.drup.2011.01.003http://doi.org/10.1016/j.drup.2011.01.003 .
Amjad M W, Kesharwani P, Amin M C I M, Iyer A K . Prog Polym Sci , 2017 . 64 154 - 181 . DOI:10.1016/j.progpolymsci.2016.09.008http://doi.org/10.1016/j.progpolymsci.2016.09.008 .
Nakamura Y, Mochida A, Choyke P L, Kobayashi H . Bioconjugate Chem , 2016 . 27 ( 10 ): 2225 - 2238 . DOI:10.1021/acs.bioconjchem.6b00437http://doi.org/10.1021/acs.bioconjchem.6b00437 .
Li T Y, Xiang W T, Li F, Xu H P . Biomaterials , 2018 . 157 17 - 25 . DOI:10.1016/j.biomaterials.2017.12.001http://doi.org/10.1016/j.biomaterials.2017.12.001 .
Park J H, Lee S, Kim J H, Park K, Kim K, Kwon I C . Prog Polym Sci , 2008 . 33 ( 1 ): 113 - 137 . DOI:10.1016/j.progpolymsci.2007.09.003http://doi.org/10.1016/j.progpolymsci.2007.09.003 .
Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C . Nat Rev Mater , 2016 . 1 ( 5 ): 16014 DOI:10.1038/natrevmats.2016.14http://doi.org/10.1038/natrevmats.2016.14 .
Li H J, Du J Z, Du X J, Xu C F, Sun C Y, Wang H X, Wang J . Proc Natl Acad Sci , 2016 . 113 ( 15 ): 4164 - 4169 . DOI:10.1073/pnas.1522080113http://doi.org/10.1073/pnas.1522080113 .
Cun X, Ruan S, Chen J, Zhang L, Li J, He Q, Gao H . Acta Biomater , 2016 . 31 186 - 196 . DOI:10.1016/j.actbio.2015.12.002http://doi.org/10.1016/j.actbio.2015.12.002 .
Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano M R, Miyazono K, Uesaka M, Nishiyama N, Kataoka K . Nat Nanotechnol , 2011 . 6 ( 12 ): 815 - 823 . DOI:10.1038/nnano.2011.166http://doi.org/10.1038/nnano.2011.166 .
Perrault S D, Walkey C, Jennings T, Fischer H C, Chan W C . Nano Lett , 2009 . 9 ( 5 ): 1909 - 1915 . DOI:10.1021/nl900031yhttp://doi.org/10.1021/nl900031y .
Zhou J, Du X, Chen X, Wang J, Zhou N, Wu D, Xu B . J Am Chem Soc , 2018 . 140 ( 6 ): 2301 - 2308 . DOI:10.1021/jacs.7b12368http://doi.org/10.1021/jacs.7b12368 .
Hu X L, Zhai S D, Liu G H, Da X, Liang H J, Liu S Y . Adv Mater , 2018 . 30 ( 21 ): 1706307 DOI:10.1002/adma.v30.21http://doi.org/10.1002/adma.v30.21 .
Lei Q, Wang S B, Hu J J, Lin Y X, Zhu C H, Rong L, Zhang X Z . ACS Nano , 2017 . 11 ( 7 ): 7201 - 7214 . DOI:10.1021/acsnano.7b03088http://doi.org/10.1021/acsnano.7b03088 .
Wang F Y K, Gao J Y, Xiao J G, Du J Z . Nano Lett , 2018 . 18 ( 9 ): 5562 - 5568 . DOI:10.1021/acs.nanolett.8b01985http://doi.org/10.1021/acs.nanolett.8b01985 .
Fraden S, Kamien R D . Biophys J , 2000 . 78 ( 5 ): 2189 - 2190 . DOI:10.1016/S0006-3495(00)76767-1http://doi.org/10.1016/S0006-3495(00)76767-1 .
Gao X, Yang S, Zhao C, Ren Y, Wei D . Angew Chem Int Ed , 2014 . 53 ( 51 ): 14027 - 14030 . DOI:10.1002/anie.v53.51http://doi.org/10.1002/anie.v53.51 .
Yang P P, Zhao X X, Xu A P, Wang L, Wang H . J Mat Chem B , 2016 . 4 ( 15 ): 2662 - 2668 . DOI:10.1039/C6TB00097Ehttp://doi.org/10.1039/C6TB00097E .
Yang P P, Luo Q, Qi G B, Gao Y J, Li B N, Zhang J P, Wang L, Wang H . Adv Mater , 2017 . 29 ( 15 ): 1605869 DOI:10.1002/adma.201605869http://doi.org/10.1002/adma.201605869 .
Liu W J, Zhang D, Li L L, Qiao Z Y, Zhang J C, Zhao Y X, Qi G B, Wan D, Pan J, Wang H . ACS Appl Mater Interfaces , 2016 . 8 ( 35 ): 22875 - 22883 . DOI:10.1021/acsami.6b07049http://doi.org/10.1021/acsami.6b07049 .
Wang L, Yang P P, Zhao X X, Wang H . Nanoscale , 2016 . 8 ( 5 ): 2488 - 2509 . DOI:10.1039/C5NR07437Ahttp://doi.org/10.1039/C5NR07437A .
Li L L, Ma H L, Qi G B, Zhang D, Yu F, Hu Z, Wang H . Adv Mater , 2016 . 28 ( 2 ): 254 - 262 . DOI:10.1002/adma.201503437http://doi.org/10.1002/adma.201503437 .
Petros R A, DeSimone J M . Nat Rev Drug Discov , 2010 . 9 ( 8 ): 615 - 627 . DOI:10.1038/nrd2591http://doi.org/10.1038/nrd2591 .
Cong Y, Ji L, Gao Y J, Liu F H, Cheng D B, Hu Z Y, Qiao Z Y, Wang H . Angew Chem Int Ed , 2019 . 58 ( 14 ): 4632 - 4637 . DOI:10.1002/anie.201900135http://doi.org/10.1002/anie.201900135 .
Yousif L F, Stewart K M, Kelley S O . ChemBioChem , 2009 . 10 ( 12 ): 1939 - 1950 . DOI:10.1002/cbic.v10:12http://doi.org/10.1002/cbic.v10:12 .
Okabe K, Inada N, Gota C, Harada Y, Funatsu T, Uchiyama S . Nat Commun , 2012 . ( 3 ): 705 .
Molla M R, Prasad P, Thayumanavan S . J Am Chem Soc , 2015 . 137 ( 23 ): 7286 - 7289 . DOI:10.1021/jacs.5b04285http://doi.org/10.1021/jacs.5b04285 .
Sreerama N, Woody R W . Anal Biochem , 2000 . 287 ( 2 ): 252 - 260 . DOI:10.1006/abio.2000.4880http://doi.org/10.1006/abio.2000.4880 .
0
浏览量
30
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构