浏览全部资源
扫码关注微信
1.国家有机毒物污染控制与资源化工程技术研究中心 南京大学环境学院 南京 210023
2.吸附与分离功能高分子材料教育部重点实验室 南开大学高分子化学研究所 天津 300071
E-mail: hongli@nankai.edu.cn
E-mail: zhqx@nju.edu.cn
纸质出版日期:2019-8,
网络出版日期:2019-4-30,
收稿日期:2019-2-26,
修回日期:2019-3-24,
扫 描 看 全 文
丁申莹, 徐云龙, 丁马林, 张延凯, 李立衡, 李弘, 张全兴. 有机胍催化法可控合成聚乳酸-聚丁二酸丁二醇酯多嵌段共聚物研究[J]. 高分子学报, 2019,50(8):816-825.
Shen-ying Ding, Yun-long Xu, Ma-lin Ding, Yan-kai Zhang, Li-heng Li, Hong Li, Quan-xing Zhang. Controlled Synthesis of a Multi-block Copolymer Poly(L-lactic acid)-
丁申莹, 徐云龙, 丁马林, 张延凯, 李立衡, 李弘, 张全兴. 有机胍催化法可控合成聚乳酸-聚丁二酸丁二醇酯多嵌段共聚物研究[J]. 高分子学报, 2019,50(8):816-825. DOI: 10.11777/j.issn1000-3304.2019.19041.
Shen-ying Ding, Yun-long Xu, Ma-lin Ding, Yan-kai Zhang, Li-heng Li, Hong Li, Quan-xing Zhang. Controlled Synthesis of a Multi-block Copolymer Poly(L-lactic acid)-
以4种生物质肌酐(CR)系有机胍化合物及辛酸亚锡(Sn(Oct)
2
)为催化剂首先合成了寡聚L-乳酸(OPLLA)及寡聚丁二酸丁二醇酯(OPBS) 2种大分子单体,继而经熔融嵌段共缩聚(bc-MP)合成了一种中分子量(MMW)多嵌段共聚物(mb(PLLA-PBS)). 实验结果证明4种有机胍的催化性能均优于Sn(Oct)
2
.4种有机胍催化剂中以醋酸肌酐胍(CRA)催化性能最优,氢核磁共振谱(
1
H-NMR)分析证明所合成MMW-mb(PLLA-PBS)分子中二嵌段摩尔组成比(
f
OPLLA
/
f
OPBS
= 89.3/10.7)非常接近设计值(
$$ \
f\!_{{\rm OPLLA}_0}/f\!_{{\rm OPBS}_0 }$$
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=13612228&type=
= 90/10),聚合物分子量(
M
w
= 28.6 kDa)、产率(82.02%)、力学性能(拉伸强度TS = 21.81 MPa,断裂伸长率BE = 49.24%)、热稳定性(起始分解温度,
T
d
0
= 270 °C)等均优于用Sn(Oct)
2
催化聚合结果. 这一优良性能嵌段共聚物可用作PLLA-PBS共混的增容剂. 利用CRA催化bc-MP反应还合成了一种高分子量(
M
w
= 114.0 kDa)的多嵌段共聚物(HMW-mb(PLA-PBS)),其拉伸强度(TS = 50.67 MPa)接近PLLA (TS = 54.10 MPa),断裂伸长率(BE = 60.66%)较PLLA提高15倍. 热重分析(TGA)证明,其起始热分解温度(
T
d
0
= 272 °C)较聚L-乳酸(PLLA)高22 °C.
1
H-NMR结构分析指出其分子中二嵌段摩尔组成比值(
f
OPLLA
/
f
OPBS
= 89.7/10.3)极接近设计值(
$$\
f\!_{{\rm OPLLA}_0} $$
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=13612231&type=
/
$$ \
f\!_{{\rm OPBS}_0}$$
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=13612233&type=
= 90/10). 上述实验结果证明,以无毒有机胍催化剂CRA实现了MMW-mb(PLLA-PBS)及HMW-mb(PLLA-PBS)的组成可控合成. 在实验研究的基础上推断了大分子单体bc-MP反应的机理.
Medium molecular weight multi-block copolymers of poly(L-lactic acid) (PLLA) and poly(butylene succinate) (PBS)
MMW-mb(PLLA-PBS)s
were controlled-synthesized
via
melt block copolycondensation (bc-MP) of two macromonomers
i.e.
oligo-PLLA (OPLLA) and oligo-PBS (OPBS) with four creatinine (CR)-based organic guanidine (OG) catalysts. The catalytic performance of the four OGs is far superior to that of Sn(Oct)
2
in terms of molecular weight (
M
w
= 14.2 – 28.6 kDa versus 12.9 kDa)
apparent yield of synthesized block copolymers (74.15% – 82.02%)
as well as the by-product (lactide
LA) yield (1.08% – 6.71% versus 20.7%). Among the OGs
creatinine acetate (CRA) shows the best catalytic performance.
1
H-NMR structural characterization of the MMW-mb(PLLA-PBS) synthesized with CRA indicates that the measured molar ratio of the two blocks
f
OPLLA
/
f
OPBS
of MMW-mb(PLLA-PBS) is 89.3/10.7
close to the designed value (
$$\
f\!_{\rm{OPLLA}_0} $$
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=13612234&type=
/
$$ \
f\!_{\rm OPBS_0}$$
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=13612235&type=
= 90/10). A high molecular weight (
M
w
= 114.0 kDa) block copolymer
HMW-mb(PLLA-PBS)
was synthesized
via
bc-MP of two macromonomers with CRA for the first time. The tensile strength of the block copolymer (50.67 MPa) is close to that of PLLA (54.10 MPa)
and the elongation at break of the copolymer (BE = 60.66%) is 15 times greater than that of PLLA. TGA analysis indicates that the original decomposition temperature (
T
d
0
= 272 °C) is 22 °C higher than that of PLLA. The molar ratio of two blocks
f
OPLLA
/
f
OPBS
(89.7/10.3) in HMW-mb(PLLA-PBS)
measured by
1
H-NMR
is very close to the designed value (90/10). This is the first controlled synthesis of multi-block copolymer of PLLA-PBS
via
bc-MP with a biogenic guanidine-based catalyst CRA. The mechanism of the bc-MP is proposed on the basis of experimental investigation.
有机胍嵌段共聚物聚L-乳酸聚丁二酸丁二醇酯熔融共缩聚
Organic guanidineMulti-block copolymerPoly(L-lactic acid)Poly(butylene succinate)Melt copolycondensation
Rasal R M, Janorkar A V, Hirt D E. Prog Polym Sci , 2010 . 35 338 - 356 . DOI:10.1016/j.progpolymsci.2009.12.003http://doi.org/10.1016/j.progpolymsci.2009.12.003 .
Inkinen S, Hakkarainen M, Albertsson A C. Biomacromolecules , 2011 . 12 ( 3 ): 523 - 532 . DOI:10.1021/bm101302thttp://doi.org/10.1021/bm101302t .
Nampoothiri K M, Nair N R, John R P. Bioresource Technol , 2010 . 101 8493 - 8501 . DOI:10.1016/j.biortech.2010.05.092http://doi.org/10.1016/j.biortech.2010.05.092 .
Gupta A P, Kumar V. Eur Polym J , 2007 . 43 4053 - 4074 . DOI:10.1016/j.eurpolymj.2007.06.045http://doi.org/10.1016/j.eurpolymj.2007.06.045 .
Zeng J, Li Y, Li W, Yang K, Wang X. Ind Eng Chem Res , 2009 . 48 ( 4 ): 1706 - 1711 . DOI:10.1021/ie801391mhttp://doi.org/10.1021/ie801391m .
Ulloa P A, Vidal J, Dicastillo C. J Appl Polym Sci , 2019 . 136 ( 8 ): 11 .
Cao Y L, Yin J B, Yan S F. Chin Sci Bull , 2006 . 16 ( 10 ): 90 - 97.
Andreopoulos A G. J Mater Sci-Mater Med , 1999 . 10 ( 1 ): 29 - 33 . DOI:10.1023/A:1008887910068http://doi.org/10.1023/A:1008887910068 .
Bendix D. Polym Degrad Stab , 1998 . 59 ( 1-3 ): 129 - 135 . DOI:10.1016/S0141-3910(97)00149-3http://doi.org/10.1016/S0141-3910(97)00149-3 .
Xu Y, Zhang S, Peng X, Wang J. Eur Polym J , 2018 . 99 250 - 258 . DOI:10.1016/j.eurpolymj.2017.12.032http://doi.org/10.1016/j.eurpolymj.2017.12.032 .
Chen G, Kim H S, Kim E S. Polymer , 2005 . 46 ( 25 ): 11829 - 11836 . DOI:10.1016/j.polymer.2005.10.056http://doi.org/10.1016/j.polymer.2005.10.056 .
Ferreira L P, Moreira A N, Pinto J C, de Souza F G. Polym Eng Sci , 2015 . 55 1889 - 1896 . DOI:10.1002/pen.v55.8http://doi.org/10.1002/pen.v55.8 .
Luo S, Li F, Yu J, Cao A. J Appl Polym Sci , 2010 . 115 ( 4 ): 2203 - 2211 . DOI:10.1002/app.v115:4http://doi.org/10.1002/app.v115:4 .
Lu J, Qiu Z, Yang W. Polymer , 2007 . 48 ( 14 ): 4196 - 4204 . DOI:10.1016/j.polymer.2007.05.035http://doi.org/10.1016/j.polymer.2007.05.035 .
Lee P C, Lee W G, Lee S Y, Chang H N. Biotechnol Bioeng , 2001 . 72 41 - 48 . DOI:10.1002/(ISSN)1097-0290http://doi.org/10.1002/(ISSN)1097-0290 .
Cheng K, Zhao X, Zeng J. Biofuel Bioprod Bior , 2012 . 6 302 - 318 . DOI:10.1002/bbb.1327http://doi.org/10.1002/bbb.1327 .
Bretz K, Kabasci S. Biotechnol Bioeng , 2012 . 109 1187 - 1192 . DOI:10.1002/bit.24387http://doi.org/10.1002/bit.24387 .
Minh P D, Besson M, Pinel C, Fuertes P, Petitj J C. Top Catal , 2010 . 53 ( 15-18 ): 1270 - 1273 . DOI:10.1007/s11244-010-9580-yhttp://doi.org/10.1007/s11244-010-9580-y .
Zhang W, Xu Y, Wang P, Hong J, Liu J, Ji J, Pual K C. J Polym Environ , 2018 . 26 ( 7 ): 1 - 9.
Jia L, Yin L, Li Y, Li Q, Yang J, Yu J, Shi Z, Fang Q, Cao A. Macromol Biosci , 2005 . 5 ( 6 ): 526 - 538 . DOI:10.1002/(ISSN)1616-5195http://doi.org/10.1002/(ISSN)1616-5195 .
Ba C, Yang J, Hao Q, Liu X, Cao A. Biomacromolecules , 2003 . 4 ( 6 ): 1827 - 1834 . DOI:10.1021/bm034235phttp://doi.org/10.1021/bm034235p .
Supthanyakul R, Kaabbuathong N, Chirachanchai S. Polym Degrad Stab , 2017 . 142 160 - 168 . DOI:10.1016/j.polymdegradstab.2017.05.029http://doi.org/10.1016/j.polymdegradstab.2017.05.029 .
Zhang B, Bian X, Xiang S, Li G, Chen X. Polym Degrad Stab , 2017 . 136 58 - 70 . DOI:10.1016/j.polymdegradstab.2016.11.022http://doi.org/10.1016/j.polymdegradstab.2016.11.022 .
Chan Woo Lee, Chao N, Yoshiharu Kimura, Kazunari Masutani. Macromol Mater Eng , 2016 . 301 1121 - 1131 . DOI:10.1002/mame.v301.9http://doi.org/10.1002/mame.v301.9 .
Tan L, Chen Y, Zhou W, Nie H, Li F, He X. Polym Degrad Stab , 2010 . 95 1920 - 1927 . DOI:10.1016/j.polymdegradstab.2010.04.010http://doi.org/10.1016/j.polymdegradstab.2010.04.010 .
Supthanyakul R, Kaabbuathong N, Chirachanchai S. Polymer , 2016 . 105 1 - 9 . DOI:10.1016/j.polymer.2016.10.006http://doi.org/10.1016/j.polymer.2016.10.006 .
Zhang M, Han W, Li W Q, Wang L, Qiu J H. Modern Chem Ind , 2007 . 27 ( 2 ): 39 - 43.
Ma Lili(马丽莉), Shao Jun(邵俊), Yang Chenguang(杨晨光), Tang Zhaohui(汤朝晖), Chen Xuesi(陈学思). Chem J Chin Univ(高等学校化学学报) , 2015 . 36 ( 11 ): 2329 - 2334.
Ji Deyun(季得运), Liu Zhengying(刘正英), Lan Xiaorong(兰小蓉), Wu Feng(吴枫), Hua Sun(华笋), Yang Mingbo(杨鸣波). Acta Polymerica Sinica(高分子学报) , 2012 . ( 7 ): 694 - 697.
Sionkowska A. Prog Polym Sci , 2011 . 36 1254 - 1276 . DOI:10.1016/j.progpolymsci.2011.05.003http://doi.org/10.1016/j.progpolymsci.2011.05.003 .
Yokohara T, Yamaguchi M. Eur Polym J , 2008 . 44 677 - 685 . DOI:10.1016/j.eurpolymj.2008.01.008http://doi.org/10.1016/j.eurpolymj.2008.01.008 .
Wang Ziyu(王子羽), He Wenwen(何文文), Xu Yunlong(徐云龙), Huang Wei(黄伟), Jiang Wei(江伟), Li Hong(李弘), Zhang Quanxing(张全兴). Acta Polymerica Sinica(高分子学报) , 2018 . ( 7 ): 786 - 796 . DOI:10.11777/j.issn1000-3304.2018.18036http://doi.org/10.11777/j.issn1000-3304.2018.18036 .
Huang W, Qi Y, Cheng N, Zong X, Zhang T, Jiang W, Li H, Zhang Q. Polym Degrad Stab , 2014 . 101 18 - 23 . DOI:10.1016/j.polymdegradstab.2014.01.022http://doi.org/10.1016/j.polymdegradstab.2014.01.022 .
Sheng Jiaye(盛家业), Wang Ziyu(王子羽), Xu Yunlong(徐云龙), Huang Wei(黄伟), Jiang Wei(江伟), Li Hong(李弘), Zhang Quanxing(张全兴). Ion Exchange and Adsorption(离子交换与吸附) , 2017 . 33 ( 3 ): 193 - 202.
Wang Ch, Li H, Zhao X. Biomaterials , 2004 . 25 ( 27 ): 5797 - 5801 . DOI:10.1016/j.biomaterials.2004.01.030http://doi.org/10.1016/j.biomaterials.2004.01.030 .
Li H, Wang C, Jin Y, Zhao X, Feng B. J Polym Sci, Part A: Polym Chem , 2004 . 42 ( 15 ): 3775 - 3781 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518 .
Li Hong(李弘), Zhang Saihui(张赛晖), Jiao Zhifeng(焦志峰), Zuo Jiaqing(左佳卿). Acta Polymerica Sinica(高分子学报) , 2008 . ( 7 ): 667 - 672 . DOI:10.3321/j.issn:1000-3304.2008.07.007http://doi.org/10.3321/j.issn:1000-3304.2008.07.007 .
Li H, Zhang S, Jiao J, Jiao Z, Kong L, Xu J, Zuo J, Zhao X, Li J. Biomacromolecules , 2009 . 10 ( 5 ): 1311 - 1314 . DOI:10.1021/bm801479phttp://doi.org/10.1021/bm801479p .
Li Hong(李弘), Jiao Jieping(焦洁平), Kong Lijun(孔丽君), Jiao Zhifeng(焦志峰), Zhang Donglai(张东来), Xu Jie(徐杰), He Peiru(何培茹). Chinese Journal of Organic Chemistry(有机化学) , 2009 . 29 ( 5 ): 736 - 741.
Pang Z, Li H, He P, Wang Y, Ren H, Wang H, Zhu X X. J Polym Sci, Part A: Polym Chem , 2012 . 50 ( 19 ): 4004 - 4009 . DOI:10.1002/pola.v50.19http://doi.org/10.1002/pola.v50.19 .
Lohmeijer B G G, Pratt R C, Leibfarth F, Logan J W, Long D A, Dove A P, Nederberg F, Choi J, Wade C, Waymouth R M, Hedrick J L. Macromolecules , 2006 . 39 ( 25 ): 8574 - 8583 . DOI:10.1021/ma0619381http://doi.org/10.1021/ma0619381 .
Li Hong(李弘), Kong Lijun(孔丽君), Zong Xupeng(宗绪鹏), Jiao Jieping(焦洁平). China patent(中国发明专利), ZL200810053913.4. 2011-11-03
Dove A P, Li H, Pratt R C, Lohmeijer B G G, Culkin D A, Waymouth R M, Hedrick J L. Chem Commun , 2006 . 0 ( 27 ): 2881 - 2883.
Li Hong(李弘). Synthesis of biodegradable polymer using organic catalysts(有机催化剂法可控合成生物降解聚合). In: Dong Jianhua(董建华) ed. Frontiers and Advances in Polymer Science II(高分子科学前沿与进展II). Beijing(北京): China Science Publishing & Media Ltd.(科学出版社), 2009. 54
Woo H G, Li H. Advanced Functional Materials. Berlin, Heidelberg: Springer, 2011. 227
Jiang W, Huang W, Cheng N, Qi Y, Zong X, Li H, Zhang Q. Polymer , 2012 . 53 ( 24 ): 5476 - 5479 . DOI:10.1016/j.polymer.2012.09.044http://doi.org/10.1016/j.polymer.2012.09.044 .
Li Hong(李弘), Zhang Quanxing(张全兴), Song Yiting(宋易婷), Sun Xiangqian(孙向前), Huang Wei(黄伟), Li Aimin(李爱民). China patent(中国发明专利), CN201510173741.4. 2015-41-13
Huang W, Cheng N, Qi Y, Zhang T, Jiang W, Li H, Zhang Q. Polymer , 2014 . 55 ( 6 ): 1491 - 1496 . DOI:10.1016/j.polymer.2014.01.054http://doi.org/10.1016/j.polymer.2014.01.054 .
0
浏览量
12
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构