浏览全部资源
扫码关注微信
1.合肥工业大学化学与化工学院 合肥 230009
2.安徽中医药大学药学院 合肥 230012
E-mail: qinhaili@hfut.edu.cn Haili Qin, E-mail: qinhaili@hfut.edu.cn
E-mail: huanhuanliu2016@ahtcm.edu.cn Huanhuan Liu, E-mail: huanhuanliu2016@ahtcm.edu.cn
纸质出版日期:2019-9,
网络出版日期:2019-5-10,
收稿日期:2019-3-7,
修回日期:2019-4-3,
扫 描 看 全 文
吴柏燊, 叶远超, 李震, 刘致远, 裴媛媛, 陈传瑞, 秦海利, 刘欢欢. 电诱导自修复纳米复合水凝胶的制备及性能研究[J]. 高分子学报, 2019,50(9):932-938.
Bai-shen Wu, Yuan-chao Ye, Zhen Li, Zhi-yuan Liu, Yuan-yuan Pei, Chuan-rui Chen, Hai-li Qin, Huan-huan Liu. Fabrication and Property of Electric-induced Self-healing Nanocomposite Hydrogels[J]. Acta Polymerica Sinica, 2019,50(9):932-938.
吴柏燊, 叶远超, 李震, 刘致远, 裴媛媛, 陈传瑞, 秦海利, 刘欢欢. 电诱导自修复纳米复合水凝胶的制备及性能研究[J]. 高分子学报, 2019,50(9):932-938. DOI: 10.11777/j.issn1000-3304.2019.19047.
Bai-shen Wu, Yuan-chao Ye, Zhen Li, Zhi-yuan Liu, Yuan-yuan Pei, Chuan-rui Chen, Hai-li Qin, Huan-huan Liu. Fabrication and Property of Electric-induced Self-healing Nanocomposite Hydrogels[J]. Acta Polymerica Sinica, 2019,50(9):932-938. DOI: 10.11777/j.issn1000-3304.2019.19047.
采用表面修饰
N
N
-双丙烯酰胱胺(BACA)的金纳米颗粒(Au NP)为多功能交联剂,聚邻苯二胺纳米带(PoPd nanobelt)为导电掺杂剂,
N
-异丙基丙烯酰胺(NIPAm)为可聚合单体,在热引发剂和催化剂存在下,发生自由基聚合反应,成功合成导电性纳米复合水凝胶. 采用扫描电子显微镜、透射电子显微镜及元素成像技术、紫外可见吸收光谱仪、直流四探针等对PoPd nanobelt和Au@BACA表征结果表明:PoPd nanobelt长度约100 μm,直径约200 nm;对PoPd nanobelt进行化学掺杂,其导电率可增加至5.5 S/m;Au NP直径约15 nm,且成功与BACA分子发生复合. 采用扫描电子显微镜及元素成像技术、透射电子显微镜、万能试验机、红外热成像仪、显微镜等对水凝胶样品表征结果表明:凝胶呈现均匀、致密的聚合物网络;Au NPs 均匀分散在聚合物网络中;凝胶导电率高达1.47 S/m;凝胶拉伸应变高达2400%,断裂强度高达1.2 MPa;修复电流强度为0.05 A,通电时间15 min时,自修复效率接近90%. 可快速、高效电诱导自修复性的高强度纳米复合水凝胶对发展智能、柔性可穿戴电子器件具有重要意义.
The fabrication of conductive hydrogels with electric-induced self-healing capability exhibits great significance to the development of safe and long-life electronic devices
expanding their application in the field of flexible electronics. For this purpose
the conductive
self-healing nanocomposite hydrogel was fabricated via in situ free radical polymerization with modified Au nanoparticles (NPs) as crosslinkers
poly(o-phenylenediamine) (PoPD) nanobelts as conductive additives and
N
-isopropyl acrylamide as monomer in the presence of initiator and catalyst. Before the polymerization
N
N
-bis(acryloyl)cystamine (BACA) with vinyl groups in the molecular structure was introduced on the surface of Au NPs through the interaction of thiolate-Au (RS-Au) bonding. The successful binding behavior between Au NPs and BACA was confirmed by the transmission electron microscopy (TEM) and UV-visible absorption spectroscopy (UV-Vis). The PoPD nanobelts with a length of nearly 100 μm and a diameter of 200 nm were prepared by mixing HAuCl
4
and oPD solution
and further stirring it at room temperature. The conductivity of PoPD nanobelts could be greatly improved through the strategy of chemical doping by introducing Fe
3+
into the aqueous solution. For example
the conductivity can be obtained as high as 5.5 S/m when the concentration of Fe
3+
employed was 1 mol/L. By combining the obtained hydrogel network with uniform and compact polymer network
the produced hydrogel showed excellent stretchability (larger than 2400%) and mechanical strength (larger than 1.2 MPa). Impressively
motivated by the thermal instability and Joule's first law
the damaged hydrogel exhibited rapid and highly efficient self-healing performance when the external power supply was available
because of the heating power generated by hydrogels at the cracks. For example
by the aid of power supply with the electric current of 0.05 A
the damaged hydrogel could be healed in 15 min with the optimal healing efficiency of nearly 90%. This prominent performance would contribute greatly to the exploration of flexible electric devices with excellent real-time self-heal ability under the working state from functional hydrogels.
金-硫配位作用自修复电诱导纳米复合水凝胶
Au-S coordination interactionSelf-healingElectric-inducedNanocomposite hydrogel
Wu J, Han S, Yang T, Li Z, Wu Z, Gui X, Tao K, Miao J, Norford L K, Liu C, Huo F. ACS Appl Mater Interfaces , 2018 . 10 19097 - 19105 . DOI:10.1021/acsami.8b03524http://doi.org/10.1021/acsami.8b03524 .
Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang Z L. Sci Adv , 2017 . 3 e1700015 DOI:10.1126/sciadv.1700015http://doi.org/10.1126/sciadv.1700015 .
Haraguchi K, Takehisa T. Adv Mater , 20002 . 14 1120 - 1124.
Wei Z, Yang J H, Zhou J, Xu F, Zrínyi M, Dussault P H, Osada Y, Chen Y M. Chem Soc Rev , 2014 . 43 8441 - 8131.
Ji S, Xia J, Xu H. ACS Macro Lett , 2016 . 5 78 - 82 . DOI:10.1021/acsmacrolett.5b00849http://doi.org/10.1021/acsmacrolett.5b00849 .
Sun T L, Kurokawa T, Kuroda S, Ihsan A B, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat Mater , 2013 . 12 932 - 937 . DOI:10.1038/nmat3713http://doi.org/10.1038/nmat3713 .
Phadke A, Zhang C, Arman B, Hsu C C, Mashelkar R A, Lele A K, Tauber M J, Arya G, Varghese S. Proc Natl Acad Sci USA , 2012 . 109 4383 - 1388 . DOI:10.1073/pnas.1201122109http://doi.org/10.1073/pnas.1201122109 .
Vericat C, Vela M E, Benitez G, Carro P, Salvarezza R C. Chem Soc Rev , 2010 . 39 1805 - 1834 . DOI:10.1039/b907301ahttp://doi.org/10.1039/b907301a .
Sun X, Dong S, Wang E. Chem Commun , 2004 . 10 1182 - 1183.
Frens G. Nat Phys Sci , 1973 . 241 20 - 22 . DOI:10.1038/physci241020a0http://doi.org/10.1038/physci241020a0 .
Ghosh D, Giri S, Mandal A, Das C K. Appl Surf Sci , 2013 . 276 120 - 128 . DOI:10.1016/j.apsusc.2013.03.044http://doi.org/10.1016/j.apsusc.2013.03.044 .
Ji X, Song X, Li J, Bai Y, Yang W, Peng X. J Am Chem Soc , 2007 . 129 13939 - 13948 . DOI:10.1021/ja074447khttp://doi.org/10.1021/ja074447k .
Gadogbe M, Zhou Y, Alahakoon S H, Perera G S, Zou S, Pittman C U, Zhang D. J Phys Chem C , 2015 . 119 18414 - 18421 . DOI:10.1021/acs.jpcc.5b05514http://doi.org/10.1021/acs.jpcc.5b05514 .
Pradhan N, Reifsnyder D, Xie R, Aldana J, Peng X. J Am Chem Soc , 2007 . 129 9500 - 9509 . DOI:10.1021/ja0725089http://doi.org/10.1021/ja0725089 .
0
浏览量
121
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构