浏览全部资源
扫码关注微信
青岛科技大学高分子科学与工程学院 橡塑材料与工程教育部重点实验室 青岛 266042
E-mail: lindashi88@hotmail.com Xin-yan Shi, E-mail: lindashi88@hotmail.com
纸质出版日期:2019-9,
网络出版日期:2019-5-17,
收稿日期:2019-3-13,
修回日期:2019-4-8,
扫 描 看 全 文
张茂林, 季行行, 史新妍. 聚降冰片烯可逆塑性形状记忆关键影响因素的研究[J]. 高分子学报, 2019,50(9):949-956.
Mao-lin Zhang, Xing-xing Ji, Xin-yan Shi. Study on the Key Factors of Reversible Plasticity Shape Memory of Polynorbornene[J]. Acta Polymerica Sinica, 2019,50(9):949-956.
张茂林, 季行行, 史新妍. 聚降冰片烯可逆塑性形状记忆关键影响因素的研究[J]. 高分子学报, 2019,50(9):949-956. DOI: 10.11777/j.issn1000-3304.2019.19050.
Mao-lin Zhang, Xing-xing Ji, Xin-yan Shi. Study on the Key Factors of Reversible Plasticity Shape Memory of Polynorbornene[J]. Acta Polymerica Sinica, 2019,50(9):949-956. DOI: 10.11777/j.issn1000-3304.2019.19050.
以聚降冰片烯(PNB)为基体,添加不同份数的环保芳烃油制备低充油PNB材料,通过示差扫描量热法(DSC)、万能电子拉伸试验机、动态力学分析(DMA)等研究了不同增塑油含量、变形温度、松弛时间等因素对PNB材料可逆塑性形状记忆性能的影响. 结果表明,增塑油可连续调节PNB的
T
g
并使其维持在室温附近,有利于室温下可逆塑性形变;当变形温度低于材料玻璃化转变起始温度2 °C时,这时材料变形耗能最低、分子链运动活化能较高,撤除外力后分子链运动受限制,因此固定率较高;而变形温度对材料恢复率影响较小,由于PNB具有超高分子量,当驱动温度远高于其玻璃化转变温度时,分子链熵值增大,产生较大的熵弹恢复力,因此恢复率均高于95.0%,材料具有优异的可逆塑性形状记忆性能;另外,延长松弛时间也可在一定程度上提高材料的形状固定率.
Compared to conventional shape memory polymers
the reversible plasticity shape memory polymers (RPSMPs) emphasize deformation and fixation at the same temperature below its transition temperature. Due to the advantages of low energy consumption and simple deformation
it has received much attention in the fields of military
aerospace and biomedicine. So it is important to understand its whole deformation process and key influencing factors. The glass transition temperature (
T
g
) of polynorbornene (PNB) is around room temperature
which is in favor of reversible deformation. Therefore
in this study
PNB materials with low oil filling were prepared by using PNB as the matrix and adding environmentally friendly aromatic oils with different contents. The effects of plasticizing oil content
deformation temperature and relaxation time on the reversible plasticity shape memory properties of PNB materials were studied by differential scanning calorimeter (DSC)
universal electronic tensile testing machine and dynamic mechanical analysis (DMA). The results show that the plasticizing oil can continuously adjust the
T
g
of the PNB materials to keep it near room temperature
which is beneficial to the reversible plasticity deformation and excellent mechanical properties. When the deformation temperature is lower than the glass transition initiation temperature 2 °C
the energy consumption for material deformation is lower
and the molecular chain motion activation energy is higher
so the movement of chain segments is limited when the applied force is removed
thus
the fixation ratio is higher. The deformation temperature has little effect on the material recovery ratio. Because of the ultra-high molecular weight of PNB
when the triggering temperature is much higher than its transition temperature (
T
g
+ 50 °C)
the molecular chain entropy increases
resulting in a large entropy elastic recovery force
so the recovery ratios of all the deformed samples at different temperatures are higher than 95.0%. It is concluded that PNB has an excellent reversible plasticity shape memory performance when the deforming temperature is 2 °C lower that its onset of glass transition temperature. In addition
prolonging the relaxation time can also increase the shape fixed ratio
but the degree is limited.
聚降冰片烯环保芳烃油可逆塑性形状记忆变形温度松弛时间
PolynorbornenePlasticizing oilReversible plasticityShape memoryDeformation timeRelaxation time
Meng H, Li G Q. Polymer , 2013 . 54 2199 - 2221 . DOI:10.1016/j.polymer.2013.02.023http://doi.org/10.1016/j.polymer.2013.02.023 .
Wu T F, O’Kelly K, Chen B Q. Eur Polym J , 2014 . 53 230 - 237 . DOI:10.1016/j.eurpolymj.2014.01.031http://doi.org/10.1016/j.eurpolymj.2014.01.031 .
Leng J S, Lan X, Liu Y J, Du S Y. Prog Mayer Sci , 2011 . 56 1077 - 1135 . DOI:10.1016/j.pmatsci.2011.03.001http://doi.org/10.1016/j.pmatsci.2011.03.001 .
Li Y, Wang Z H, Fei G X, Xia H S. Macromol Rapid Commun , 2017 . 38 1700421, 1 - 8.
Zhang Z X, Wang W Y, Yang J H, Zhang N, Huang T, Wang Y. J Phys Chem C , 2016 . 120 22793 - 22802 . DOI:10.1021/acs.jpcc.6b06345http://doi.org/10.1021/acs.jpcc.6b06345 .
Song G B, Ma N, Li H N. Eng Struct , 2006 . 28 1266 - 1274 . DOI:10.1016/j.engstruct.2005.12.010http://doi.org/10.1016/j.engstruct.2005.12.010 .
Li F K, Zhu W, Zhang X, Zhao C T, Xu M. Chinese J Polym Sci , 1998 . 16 155 - 163.
Bai Y K, Liu Y J, Wang Q H. Adv Polym Technol , 2016 . 21732 1 - 9.
Liu T Y, Huang R, Qi X D, Dong P, Fu Q. Polymer , 2017 . 114 28 - 35 . DOI:10.1016/j.polymer.2017.02.077http://doi.org/10.1016/j.polymer.2017.02.077 .
Zhang Z X, Wei X, Yang J H, Zhang N, Huang T Wang Y, Gao X L. Ind Eng Chem Res , 2016 . 55 12232 - 12241 . DOI:10.1021/acs.iecr.6b03438http://doi.org/10.1021/acs.iecr.6b03438 .
Ni X Y, Sun X H. J Appl Polym Sci , 2010 . 100 879 - 885.
Chen T H, Li Q Y, Fu Z W, Sun L W, Guo W H, Wu C F. Polym Bull , 2018 . 75 2181 - 2196 . DOI:10.1007/s00289-017-2144-6http://doi.org/10.1007/s00289-017-2144-6 .
Cavicchi K A, Pantoja M, Cakmak M. J Polym Sci, Part B: Polym Phys , 2016 . 54 1389 - 1396 . DOI:10.1002/polb.v54.14http://doi.org/10.1002/polb.v54.14 .
Yakacki C M, Ortega A M, Frick C P, Lakhera N, Xiao R, Nguyen T D . 2012 . 297 1160 - 1166.
Rodriguez E D, Luo X F, Mather P T. ACS Appl Mater Interfaces , 2011 . 3 152 - 161 . DOI:10.1021/am101012chttp://doi.org/10.1021/am101012c .
Xiao R, Choi J, Lakhera N, Yakacki Cr M, Frick C P, Nguyen T D. J Mech Phys Solids , 2013 . 61 1612 - 1635 . DOI:10.1016/j.jmps.2013.02.005http://doi.org/10.1016/j.jmps.2013.02.005 .
Xie T. Polymer , 2011 . 52 4985 - 5000 . DOI:10.1016/j.polymer.2011.08.003http://doi.org/10.1016/j.polymer.2011.08.003 .
Lin T F, Tang Z H, Guo B C. ACS Appl Mater Interfaces , 2014 . 6 21060 - 21068 . DOI:10.1021/am505937phttp://doi.org/10.1021/am505937p .
Safranski D L, Gall K. Polymer , 2008 . 49 4446 - 4455 . DOI:10.1016/j.polymer.2008.07.060http://doi.org/10.1016/j.polymer.2008.07.060 .
Feldkamp D M, Rousseau I A. Macromol Mater Eng , 2010 . 295 726 - 734 . DOI:10.1002/mame.201000035http://doi.org/10.1002/mame.201000035 .
Haselwander T F A, Heitz W, Krügel S A, Wendorff J H. Macromol Chem Phys , 2010 . 197 3435 - 3453.
Qu M, Ma Y, Li C L, Shi X Y. J Elastom Plast , 2017 . 49 560 - 573 . DOI:10.1177/0095244316676867http://doi.org/10.1177/0095244316676867 .
Xiao Ya(肖雅), Qu Ming(曲明), Shi Xinyan(史新妍) . 2018 . ( 3 ): 402 - 409.
Gu S L, Sadhan J. Polymers-Basel , 2014 . 6 1008 - 1025 . DOI:10.3390/polym6041008http://doi.org/10.3390/polym6041008 .
Zhang C S, Ni Q Q. Compos Struct , 2007 . 78 153 - 161 . DOI:10.1016/j.compstruct.2005.08.029http://doi.org/10.1016/j.compstruct.2005.08.029 .
Ping P, Wang W S, Chen X S, Jing X B. Biomacromolecules , 2005 . 6 587 - 592 . DOI:10.1021/bm049477jhttp://doi.org/10.1021/bm049477j .
Anthamatten M, Roddecha S, Li J H. Macromolecules , 2013 . 46 4230 - 4234 . DOI:10.1021/ma400742ghttp://doi.org/10.1021/ma400742g .
Rivlin R S. Philos Trans R Soc , 1948 . 240 459 - 490 . DOI:10.1098/rsta.1948.0002http://doi.org/10.1098/rsta.1948.0002 .
Treloar L R G. J Appl Phys , 1940 . 11 582 - 592 . DOI:10.1063/1.1712836http://doi.org/10.1063/1.1712836 .
0
浏览量
19
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构