浏览全部资源
扫码关注微信
大连理工大学化工学院 精细化工国家重点实验室 大连 116024
E-mail: guofang@dlut.edu.cn Fang Guo, E-mail: guofang@dlut.edu.cn
纸质出版日期:2019-9,
网络出版日期:2019-5-10,
收稿日期:2019-3-20,
扫 描 看 全 文
刘薇, 宋芸芸, 刁凯颖, 郭方. 单茂钪催化月桂烯与苯乙烯共聚合的研究[J]. 高分子学报, 2019,50(9):957-963.
Wei Liu, Yun-yun Song, Kai-ying Diao, Fang Guo. Copolymerization of Myrcene with Styrene Catalyzed by Half-sandwich Scandium Complexes[J]. Acta Polymerica Sinica, 2019,50(9):957-963.
刘薇, 宋芸芸, 刁凯颖, 郭方. 单茂钪催化月桂烯与苯乙烯共聚合的研究[J]. 高分子学报, 2019,50(9):957-963. DOI: 10.11777/j.issn1000-3304.2019.19056.
Wei Liu, Yun-yun Song, Kai-ying Diao, Fang Guo. Copolymerization of Myrcene with Styrene Catalyzed by Half-sandwich Scandium Complexes[J]. Acta Polymerica Sinica, 2019,50(9):957-963. DOI: 10.11777/j.issn1000-3304.2019.19056.
采用(C
5
H
5
)Sc(CH
2
SiMe
3
)
2
(THF) (
1
)、(C
5
Me
4
SiMe
3
)Sc(CH
2
SiMe
3
)
2
(THF) (
2
) 2种单茂钪催化剂,分别考察了其催化月桂烯与苯乙烯共聚合的性能,并通过核磁共振(
1
H-NMR、
13
C-NMR)、凝胶渗透色谱(GPC)和示差扫描量热法(DSC)对所获共聚物结构和热性能进行表征分析. 结果表明,在室温甲苯溶剂中,改变月桂烯和苯乙烯的用量,2种单茂钪催化剂均对月桂烯和苯乙烯共聚合表现了较高的催化活性(10
4
g polymer mol
Sc
–1
h
–1
),获得了组成可控(月桂烯含量22 mol% ~ 83 mol%)、高分子量(
M
n
= 4.8 × 10
4
~ 1.13 × 10
5
)、窄分布(
M
w
/
M
n
= 1.49 ~ 1.99)的苯乙烯-月桂烯共聚物,催化剂结构直接影响共聚物的立体和序列结构. 采用单茂钪
1
催化月桂烯与苯乙烯共聚合,月桂烯先聚合形成高顺式1
4-聚月桂烯嵌段(选择性95%),之后苯乙烯开始聚合形成无规聚苯乙烯嵌段,所获共聚物为高顺式聚月桂烯-无规聚苯乙烯嵌段共聚物. 由单茂钪
1
获得的月桂烯-苯乙烯嵌段共聚物均含有–63和96 °C 2个玻璃化转变温度(
T
g
),分别对应高顺式聚月桂烯嵌段和无规聚苯乙烯嵌段的
T
g
. 采用单茂钪
2
催化月桂烯与苯乙烯共聚合,也是月桂烯优先聚合,随后苯乙烯大量聚合,共聚物中月桂烯的含量呈梯度下降趋势而苯乙烯含量呈梯度上升趋势,共聚物为月桂烯-苯乙烯梯度共聚物,共聚物中月桂烯含有3
4-结构单元(选择性75%)和顺式-1
4-结构单元(选择性25%). 由单茂钪
2
获得的月桂烯-苯乙烯梯度共聚物均含有一个–35 °C的
T
g
和一个254 °C的熔点(
T
m
),分别对应聚月桂烯嵌段的
T
g
和间规聚苯乙烯嵌段的
T
m
.
The copolymerization of myrcene with styrene by the half-sandwich scandium complexes (C
5
H
5
)Sc(CH
2
SiMe
3
)
2
(THF) (
1
) and (C
5
Me
4
SiMe
3
)Sc(CH
2
SiMe
3
)
2
(THF) (
2
) was studied. The structures and thermal properties of the obtained copolymers were characterized by NMR
GPC and DSC. The copolymerization of myrcene with styrene at room temperature had been achieved and the copolymerization activity reached up to 10
4
g polymer mol
Sc
–1
h
–1
. The myrcene-styrene copolymers with controllable compositions (myrcene content = 22 mol% – 83 mol%)
high molecular weight (
M
n
= 4.8 × 10
4
– 11.3 × 10
4
) and narrow molecular weight distribution (
M
w
/
M
n
= 1.49 – 1.99) were conveniently obtained by changing the feed ratio of myrcene and styrene. Significant influence of catalyst structure on the stereoselectivity and comonomer distribution sequences in the resulting copolymers was observed. In the copolymerization of myrcene and styrene catalyzed by scandium complex
1
styrene started to incorporate into chains after myrene was almost completely consumed
and diblock copolymers containing
cis
-1
4-polymyrcene (selectivity 95%) block and atactic polystyrene block were obtained. The obtained copolymers with different myrcene contents possessed two glass transition temperatures (
T
g
– 63 and 96 °C)
close to those of
cis
-1
4-polymyrcene and atactic polystyrene. In contrast
in the copolymerization of myrcene and styrene catalyzed by scandium complex
2
myrene content showed a gradient decline accompanied by styrene content increasing gradually
producing gradient copolymers containing 3
4-polymyrcene (3
4-selectivity 75%
cis
-1
4-selectivity 25%) and syndiotactic polystyrene. The obtained copolymers with different myrcene contents possessed a
T
g
at –35 °C and a melting temperature (
T
m
) at 254 °C
originating from polymyrcene block and syndiotactic polystyrene block
respectively. There is a great difference in the reactivity ratios between myrcene and styrene in the copolymerization catalyzed by scandium
1
(
r
My
>
>
r
St
). However
the gap between the reactivity ratios of myrcene and styrene in the copolymerization catalyzed by scandium complex
2
was much smaller (
r
My
= 8.47
r
St
= 0.76) and gradient copolymers were generated.
单茂钪月桂烯苯乙烯共聚合
ScandiumMyrceneStyreneCopolymerization
Wilbon P A, Chu F, Tang C. Macromol Rapid Commun , 2012 . 34 8 - 37.
Zhao J, Schlaad H. Adv Polym Sci , 2013 . 253 151 - 190.
Huang Y D, He J Y, Cai G L, Liu Z X, Li T T, Du T T, Zhang S W, Yao B, Li X F. J Polym Sci, Part A: Polym Chem , 2017 . 55 1250 - 1259 . DOI:10.1002/pola.v55.7http://doi.org/10.1002/pola.v55.7 .
Liu B, Han B, Zhang C, Li S, Sun G, Cui D. Chinese J Polym Sci , 2015 . 33 792 - 796 . DOI:10.1007/s10118-015-1629-8http://doi.org/10.1007/s10118-015-1629-8 .
Liu B, Li L, Sun G, Liu D, Li S, Cui D. Chem Commun , 2015 . 51 1039 - 1041 . DOI:10.1039/C4CC08962Fhttp://doi.org/10.1039/C4CC08962F .
Liu B, Liu D, Li S, Sun G, Cui D. Chinese J Polym Sci , 2016 . 34 104 - 110 . DOI:10.1007/s10118-016-1729-0http://doi.org/10.1007/s10118-016-1729-0 .
Loughmari S, Hafid A, Bouazza A, Bouadili A E, Zinck P, Visseaux M. J Polym Sci, Part A: Polym Chem , 2012 . 50 2898 DOI:10.1002/pola.26069http://doi.org/10.1002/pola.26069 .
Georges S, Toure A O, Visseaux M, Zinck P. Macromolecules , 2014 . 47 4538 - 4547 . DOI:10.1021/ma5008896http://doi.org/10.1021/ma5008896 .
Laur E, Welle A, Vantomme A, Brusson J M, Carpentier J F, Kirillov E. Catalysts , 2017 . 7 361 - 372 . DOI:10.3390/catal7120361http://doi.org/10.3390/catal7120361 .
Naddeo M, Buonerba A, Luciano E, Grassi A, Proto A, Capacchione C. Polymer , 2017 . 131 151 - 159 . DOI:10.1016/j.polymer.2017.10.028http://doi.org/10.1016/j.polymer.2017.10.028 .
Fu Hongran(付洪然), Song Yunyun(宋芸芸), Ren Xiaorui(任晓瑞), Guo Fang(郭方). Acta Polymerica Sinica(高分子学报) , 2018 . ( 11 ): 1416 - 1421 . DOI:10.11777/j.issn1000-3304.2018.18088http://doi.org/10.11777/j.issn1000-3304.2018.18088 .
Meng Rui(孟蕊), Guo Fang(郭方), Shi Zhenghai(史正海), Li Yang(李杨). Acta Polymerica Sinica(高分子学报) , 2015 . ( 10 ): 1189 - 1195 . DOI:10.11777/j.issn1000-3304.2015.15062http://doi.org/10.11777/j.issn1000-3304.2015.15062 .
Guo F, Meng R, Li Y, Hou Z M. Polymer , 2015 . 76 159 - 167 . DOI:10.1016/j.polymer.2015.08.060http://doi.org/10.1016/j.polymer.2015.08.060 .
Guo F, Nishiura M, Koshino H, Hou Z M. Macromolecules , 2011 . 44 6335 - 6344 . DOI:10.1021/ma201271rhttp://doi.org/10.1021/ma201271r .
Luo Y, Baldamus J, Hou Z M. J Am Chem Soc , 2004 . 126 ( 43 ): 13910 - 13911 . DOI:10.1021/ja046063phttp://doi.org/10.1021/ja046063p .
Li X F, Nishiura M, Mori K, Mashiko T, Hou Z M. Chem Commun , 2007 . 40 4137 - 4139.
Chien J C W, Tsai W M, Rausch M D. J Am Chem Soc , 1991 . 113 8570 - 8571 . DOI:10.1021/ja00022a081http://doi.org/10.1021/ja00022a081 .
Li X F, Nishiura M, Hu L, Mori K, Hou Z M. J Am Chem Soc , 2009 . 131 13870 - 13882 . DOI:10.1021/ja9056213http://doi.org/10.1021/ja9056213 .
Luo Y, Luo Y J, Qu J P, Hou Z M. Organometallics , 2011 . 30 2908 - 2919 . DOI:10.1021/om100998chttp://doi.org/10.1021/om100998c .
0
浏览量
26
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构