浏览全部资源
扫码关注微信
华东理工大学材料科学与工程学院 超细材料制备与应用教育部重点实验室 上海多级结构纳米材料工程技术研究中心 上海 200237
E-mail: zlingzi@ecust.edu.cn Ling Zhang, E-mail: zlingzi@ecust.edu.cn
纸质出版日期:2019-11,
网络出版日期:2019-6-10,
收稿日期:2019-4-1,
修回日期:2019-4-25,
扫 描 看 全 文
闫蓉, 张玲, 李春忠. 泡沫骨架构筑 3D-BN/环氧树脂复合材料的制备和研究[J]. 高分子学报, 2019,50(11):1202-1210.
Rong Yan, Ling Zhang, Chun-zhong Li. Study on the Construction of 3D-BN Network in Epoxy Resin by Introducing Foam Skeleton[J]. Acta Polymerica Sinica, 2019,50(11):1202-1210.
闫蓉, 张玲, 李春忠. 泡沫骨架构筑 3D-BN/环氧树脂复合材料的制备和研究[J]. 高分子学报, 2019,50(11):1202-1210. DOI: 10.11777/j.issn1000-3304.2019.19064.
Rong Yan, Ling Zhang, Chun-zhong Li. Study on the Construction of 3D-BN Network in Epoxy Resin by Introducing Foam Skeleton[J]. Acta Polymerica Sinica, 2019,50(11):1202-1210. DOI: 10.11777/j.issn1000-3304.2019.19064.
基于在聚合物基体中添加导热物质,构筑致密导热网络可以改善基体的低导热性,引入泡沫作为骨架,利用其三维支架结构,结合2D片状无机填料氮化硼作为导热填料,在环氧树脂中构筑导热网络. 通过研究2种具有不同骨架结构和组成的泡沫:聚氨酯泡沫和纳米三聚氰胺(蜜胺)泡沫,采取先浸渍后热压固化的方法,获得具有高热导率的环氧树脂基复合材料. 最后,当氮化硼含量为41 wt%,热压固化时的压缩比为90%时,复合材料面穿方向热导率可高达3.88 W·m
–1
·K
–1
.
It is a traditional method to improve the thermal conductivity of matrix by adding fillers. However
it is a great challenge to construct a dense heat conduction network in composite material. The current researches on building thermal conductive network is to combine different fillers through structure design for achieving high thermal conductivity with the lowest possible filler content. Due to the electrical insulation requirements of electronic equipment
hexagonal boron nitride (h-BN) has been extensively studied as an inorganic thermal conductive filler. It has a layer structure that shows a relatively high TC of 300 W·m
–1
·K
–1
in the h-BN planar direction. In this study
the foam was introduced into the epoxy resin as a skeleton
and thermal conductive network was constructed by immersing the BN/E51 mixture into the foam. By comparing the hot deformation behavior of two kinds of foams with different structures and compositions: polyurethane foam (PF) and nano-melamine (melamine) foam (MF)
epoxy resin-based composites with high thermal conductivity were obtained by hot press curing under the right compression ratio. PF has a large single arm size and good elastic deformation ability
but it is easy to become a barrier between BN
which is bad for forming thermal conductive path after compression. However
MF has a small single arm size and can be broken into four needle-like scaffold structures after compression. The needle-like scaffold structure promotes the good dispersion of BN
and finally forms a thermal path of BN throughout the material
which plays a key role in improving the thermal conductivity of the composite. As a result
MF-BN/E51 showed an excellent thermal conductivity of 3.88 W·m
–1
·K
–1
at 41 wt% BN load when the degree of hot pressing was 90%. It provides a new way for the composites to achieve a higher thermal conductivity with a less filler load.
聚氨酯泡沫蜜胺泡沫氮化硼导热网络热导率
Polyurethane foamMelamine foamBoron nitrideThermal conductive networkThermal conductivity
Chen H Y, Valeriy V, Ginzburg B, Yang J, Yang Y F, Liu W, Huang Y, Du L B, Chen B. Prog Polym Sci , 2016 . 59 41 - 85 . DOI:10.1016/j.progpolymsci.2016.03.001http://doi.org/10.1016/j.progpolymsci.2016.03.001 .
Xie B H, Huang X, Zhang G J. Compos Sci Technol , 2013 . 85 98 - 103 . DOI:10.1016/j.compscitech.2013.06.010http://doi.org/10.1016/j.compscitech.2013.06.010 .
Zhou T, Wang X, Cheng P, Wang T, Xiong D, Wang X. Express Polym Lett , 2013 . 7 585 - 594 . DOI:10.3144/expresspolymlett.2013.56http://doi.org/10.3144/expresspolymlett.2013.56 .
Jang I, Kyung-Ho Sh, Hyeon K, Juseong K, Wan-Ho K, Sie-Wook J, Jae-Pil K. Colloid Surface A , 2017 . 518 64 - 72 . DOI:10.1016/j.colsurfa.2017.01.011http://doi.org/10.1016/j.colsurfa.2017.01.011 .
Chen J, Huang X Y, Zhu Y K, Jiang P K. Adv Funct Mater , 2017 . 27 ( 5 ): 1604754 DOI:10.1002/adfm.v27.5http://doi.org/10.1002/adfm.v27.5 .
Kwon Q H, Ha T, Kim D G, Kim B G, Kim Y S, Shin T J, Koh W G, Lim H S, Yoo J Y. ACS Appl Mater Interfaces , 2018 . 10 34625 - 34633 . DOI:10.1021/acsami.8b12075http://doi.org/10.1021/acsami.8b12075 .
Li Z, Ju D, Han L, Dong L. Thermochim Acta , 2017 . 652 9 - 16 . DOI:10.1016/j.tca.2017.03.006http://doi.org/10.1016/j.tca.2017.03.006 .
Jiang Y, Liu Y, Min P, Sui G. Compos Sci Technol , 2017 . 144 63 - 69 . DOI:10.1016/j.compscitech.2017.03.023http://doi.org/10.1016/j.compscitech.2017.03.023 .
Pak S Y, Kim H M, Kim S Y, Youn J R. Carbon , 2012 . 50 4830 - 4838 . DOI:10.1016/j.carbon.2012.06.009http://doi.org/10.1016/j.carbon.2012.06.009 .
Wu K, Fang J Ch, Ma J R, Huang R, Chai S G, Chen F, Fu Q. ACS Appl Mater Interfaces , 2017 . 9 30035 - 30045 . DOI:10.1021/acsami.7b08214http://doi.org/10.1021/acsami.7b08214 .
Zeng X, Yao Y, Gong Z, Wang F F, Sun R, Xu J B, Wong C P. Small , 2015 . 11 ( 46 ): 6205 - 6213 . DOI:10.1002/smll.v11.46http://doi.org/10.1002/smll.v11.46 .
Cho E C, Chang-Jian C W, Hsiao Y S, Lee K Ch, Huang J H. Compos Part A: Appl S , 2016 . 90 678 - 686 . DOI:10.1016/j.compositesa.2016.08.035http://doi.org/10.1016/j.compositesa.2016.08.035 .
Wu D, Gao X, Sun J, Guo Z. Compos Part A: Appl S , 2017 . 102 88 - 95 . DOI:10.1016/j.compositesa.2017.07.027http://doi.org/10.1016/j.compositesa.2017.07.027 .
Cho H B, Nakayama T, Suematsu H. Compos Sci Technol , 2016 . 129 205 - 213 . DOI:10.1016/j.compscitech.2016.04.033http://doi.org/10.1016/j.compscitech.2016.04.033 .
Tian J, Shi Y Q, Fan W, Liu T X. Compos Commun , 2019 . 12 21 - 25 . DOI:10.1016/j.coco.2018.12.003http://doi.org/10.1016/j.coco.2018.12.003 .
Huang L, Li Y F, Wang C, Zhang C, Liu T X. Compos Commun , 2018 . 8 83 - 91 . DOI:10.1016/j.coco.2017.11.005http://doi.org/10.1016/j.coco.2017.11.005 .
Hu J, Huang Y, Yao Y, Pan G, Sun J, Zeng X, Sun R, Xu J, Song B, Wong C. ACS Appl Mater Interfaces , 2017 . 9 13544 - 13553 . DOI:10.1021/acsami.7b02410http://doi.org/10.1021/acsami.7b02410 .
Wang Z G, Huang Y F, Zhang G Q, Wang H Q, Xu J Z, Lei J, Zhu L, Gong F, Li Z M. Ind Eng Chem Res , 2018 . 57 10391 - 10397 . DOI:10.1021/acs.iecr.8b01764http://doi.org/10.1021/acs.iecr.8b01764 .
Li W Y, Song Z Q, Qian J, Tan Z Y, Chu H Y, Wu Q Y, Nie W. Compos Sci Technol , 2018 . 163 71 - 80 . DOI:10.1016/j.compscitech.2018.05.008http://doi.org/10.1016/j.compscitech.2018.05.008 .
Cui X L, Ding P, Zhuang N, Shi L Y, Song N, Tang S F. ACS Appl Mater Interfaces , 2015 . 7 19068 - 19075 . DOI:10.1021/acsami.5b04444http://doi.org/10.1021/acsami.5b04444 .
Liu Xiaoyan(柳晓燕), Wu Yicheng(吴奕澄), Yu Zhiqiang(于志强). Acta Polymerica Sinica(高分子学报) , 2016 . ( 8 ): 1098 - 1104 . DOI:10.11777/j.issn1000-3304.2016.15359http://doi.org/10.11777/j.issn1000-3304.2016.15359 .
Wei Shiyang(魏世洋), Zheng Zhibo(郑智博), Yu Qiaoxi(余桥溪). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 4 ): 402 - 409 . DOI:10.11777/j.issn1000-3304.2018.18253http://doi.org/10.11777/j.issn1000-3304.2018.18253 .
0
浏览量
30
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构