浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学院大学 北京 100049
3.中山大学材料学院 广州 510275
E-mail: wdchen@ciac.ac.cn Wen-duo Chen, E-mail: wdchen@ciac.ac.cn
E-mail: jzchen@ciac.ac.cn Ji-zhong Chen, E-mail: jzchen@ciac.ac.cn
纸质出版日期:2019-11,
网络出版日期:2019-7-12,
收稿日期:2019-4-12,
修回日期:2019-5-29,
扫 描 看 全 文
杨镇岳, 陈文多, 刘立军, 陈继忠. 泊肃叶流中环形高分子的迁移行为及与线性高分子的差异[J]. 高分子学报, 2019,50(11):1229-1238.
Zhen-yue Yang, Wen-duo Chen, Li-jun Liu, Ji-zhong Chen. Migration of Ring Polymers in Poiseuille Flow and Comparison with Linear Polymers[J]. Acta Polymerica Sinica, 2019,50(11):1229-1238.
杨镇岳, 陈文多, 刘立军, 陈继忠. 泊肃叶流中环形高分子的迁移行为及与线性高分子的差异[J]. 高分子学报, 2019,50(11):1229-1238. DOI: 10.11777/j.issn1000-3304.2019.19074.
Zhen-yue Yang, Wen-duo Chen, Li-jun Liu, Ji-zhong Chen. Migration of Ring Polymers in Poiseuille Flow and Comparison with Linear Polymers[J]. Acta Polymerica Sinica, 2019,50(11):1229-1238. DOI: 10.11777/j.issn1000-3304.2019.19074.
采用多粒子碰撞动力学与分子动力学相耦合的模拟方法,研究了圆管内环形链的迁移行为和构象性质,并与线形链的结果相比较. 模拟结果表明环形链随着流场强度的增加向圆管中心迁移,该现象是流体力学相互作用导致,而非剪切梯度. 剔除流体力学相互作用,发现环形链沿流场方向的拉伸程度比含流体力学相互作用时更大. 给定流场强度,环形链链长越长,与管壁之间的流体力学相互作用越强,导致其在圆管中心附近出现的概率更高. 通过比较相同平衡态尺寸和链长的环形链和线形链在圆管中的迁移行为和构象性质,发现线形链沿流场方向的拉伸比环形链更强,导致其更易向管壁方向发生迁移,因此线形链在圆管中心附近出现的概率低于环形链.
The dynamical and conformational properties of individual ring polymers with different chain lengths are investigated in Poiseuille flow through a tube using a hybrid mesoscale hydrodynamic simulation method
and migration behaviors are compared with those of linear chains. As the flow strength is increased
the ring chains migrate towards the centerline of the tube when the hydrodynamic interactions are included
but towards the tube wall when the hydrodynamic interactions are switched off. By analyzing the radial center-of-mass distribution function and the width of the distribution function of the ring chains
our studies reveal that the migration towards the centerline of the tube should be attributed to the hydrodynamic interactions rather than to the shear gradient in the Poiseuille flow. With the increase of flow intensity
the ring chains stretched more along the flow direction and shrunk smaller along the radial direction
independent of the location of their center-of-mass across the tube. When the hydrodynamic interactions are switched off
the extension along the flow direction and the shrinkage along the radial direction of the ring polymers are more pronounced than those with the hydrodynamic interactions. For a given flow strength
the longer the ring chain is
the eaiser it is to concentrate around the center of the tube due to the stronger hydrodynamic interactions between the chain and the tube wall
and the resulting distribution structure transits from the platform to the bimodal
and finally to the single-peaked with increasing chain length. By comparing the center-of-mass distributions and the structural properties between the ring and linear chains with the same chain length or the equilibrium radius of gyration
our simulation results show that the linear chains exhibit a more stretched conformation along the flow direction than the ring polymer chains
leading to the outward migration with a lower number density in the tube center.
关键词泊肃叶流环形链流体力学相互作用高分子迁移
Poiseuille flowRing polymerHydrodynamic interactionsPolymer migration
Witz G, Rechendorff K, Adamcik J, Dietler G. Phys Rev Lett , 2011 . 106 248301 DOI:10.1103/PhysRevLett.106.248301http://doi.org/10.1103/PhysRevLett.106.248301 .
Jung Y, Jeon C, Kim J, Jeong H, Jun S, Ha B Y. Soft Matter , 2012 . 8 2095 - 2102 . DOI:10.1039/C1SM05706Ehttp://doi.org/10.1039/C1SM05706E .
Levy M S, O'Kennedy R D, Shamlou P A, Dunnill P. Trends Biotechnol , 2000 . 18 296 - 305 . DOI:10.1016/S0167-7799(00)01446-3http://doi.org/10.1016/S0167-7799(00)01446-3 .
Vafabakhsh R, Ha T. Science , 2012 . 337 1097 - 1101 . DOI:10.1126/science.1224139http://doi.org/10.1126/science.1224139 .
Gebhardt J C M, Bornschlogl T, Rief M. Proc Natl Acad Sci , 2010 . 107 2013 - 2018 . DOI:10.1073/pnas.0909854107http://doi.org/10.1073/pnas.0909854107 .
Lasda E, Parker R. RNA , 2014 . 20 1829 - 1842 . DOI:10.1261/rna.047126.114http://doi.org/10.1261/rna.047126.114 .
Dong Y, He D, Peng Z, Peng W, Shi W, Wang J, Li B, Zhang C, Duan C. J Hematol Oncol , 2017 . 10 1 - 8 . DOI:10.1186/s13045-016-0379-6http://doi.org/10.1186/s13045-016-0379-6 .
Weiss L B, Nikoubashman A, Likos C N. ACS Macro Letters , 2017 . 6 1426 - 1431 . DOI:10.1021/acsmacrolett.7b00768http://doi.org/10.1021/acsmacrolett.7b00768 .
Saintillan D, Shaqfeh E S G, Darve E. J Fluid Mech , 2006 . 557 297 - 306 . DOI:10.1017/S0022112006000243http://doi.org/10.1017/S0022112006000243 .
Hsiao K W, Schroeder C M, Sing C E. Macromolecules , 2016 . 49 1961 - 1971 . DOI:10.1021/acs.macromol.5b02357http://doi.org/10.1021/acs.macromol.5b02357 .
Chelakkot R, Winkler R G, Gompper G. J Phys: Condens Matter , 2011 . 23 184117 DOI:10.1088/0953-8984/23/18/184117http://doi.org/10.1088/0953-8984/23/18/184117 .
Hernández-Ortiz J P, Ma H, de Pablo J J, Graham M D. Phys Fluids , 2006 . 18 123101 DOI:10.1063/1.2397571http://doi.org/10.1063/1.2397571 .
Xu X, Chen J, An L. Sci China Chem , 2017 . 60 1609 - 1616 . DOI:10.1007/s11426-017-9129-3http://doi.org/10.1007/s11426-017-9129-3 .
Steinhauser D, Köster S, Pfohl T. ACS Macro Letters , 2012 . 1 541 - 545 . DOI:10.1021/mz3000539http://doi.org/10.1021/mz3000539 .
Fang L, Hu H, Larson R G. J Rheol , 2005 . 49 127 - 138 . DOI:10.1122/1.1822930http://doi.org/10.1122/1.1822930 .
Fang L, Larson R G. Macromolecules , 2007 . 40 8784 - 8787 . DOI:10.1021/ma0626315http://doi.org/10.1021/ma0626315 .
Ma H, Graham M D. Phys Fluids , 2005 . 17 083103 DOI:10.1063/1.2011367http://doi.org/10.1063/1.2011367 .
Butler J E, Usta O B, Kekre R, Ladd A J C. Phys Fluids , 2007 . 19 113101 DOI:10.1063/1.2801409http://doi.org/10.1063/1.2801409 .
Fan X, Phan-Thien N, Yong N T, Wu X, Xu D. Phys Fluids , 2003 . 15 11 - 21 . DOI:10.1063/1.1522750http://doi.org/10.1063/1.1522750 .
Usta O B, Ladd A J C, Butler J E. J Chem Phys , 2005 . 122 094902 DOI:10.1063/1.1854151http://doi.org/10.1063/1.1854151 .
Usta O B, Butler J E, Ladd A J C. Phys Fluids , 2006 . 18 031703 DOI:10.1063/1.2186591http://doi.org/10.1063/1.2186591 .
Guo Jiayi(郭佳意), Li Xuejin(李学进), Liang Haojun(梁好均). Acta Polymerica Sinica(高分子学报) , 2012 . ( 2 ): 160 - 167 . DOI:10.3724/SP.J.1105.2012.11117http://doi.org/10.3724/SP.J.1105.2012.11117 .
Xu Shaofeng(许少锋), Wang Jiugen(汪久根).. Acta Polymerica Sinica(高分子学报) , 2015 . ( 3 ): 346 - 355 . DOI:10.11777/j.issn1000-3304.2015.14290http://doi.org/10.11777/j.issn1000-3304.2015.14290 .
Jendrejack R M, Dimalanta E T, Schwartz D C, Graham M D, de Pablo J J. Phys Rev Lett , 2003 . 91 038102 DOI:10.1103/PhysRevLett.91.038102http://doi.org/10.1103/PhysRevLett.91.038102 .
Jendrejack R M, Schwartz D C, Graham M D, de Pablo J J. J Chem Phys , 2003 . 119 1165 - 1173 . DOI:10.1063/1.1575200http://doi.org/10.1063/1.1575200 .
Jendrejack R M, Schwartz D C, de Pablo J J, Graham M D. J Chem Phys , 2004 . 120 2513 - 2529 . DOI:10.1063/1.1637331http://doi.org/10.1063/1.1637331 .
Khare R, Graham M D, de Pablo J J. Phys Rev Lett , 2006 . 96 224505 DOI:10.1103/PhysRevLett.96.224505http://doi.org/10.1103/PhysRevLett.96.224505 .
Weeks J D, Chandler D, Andersen H C. J Chem Phys , 1971 . 54 5237 - 5247 . DOI:10.1063/1.1674820http://doi.org/10.1063/1.1674820 .
Kremer K, Grest G S. J Chem Phys , 1990 . 92 5057 - 5086 . DOI:10.1063/1.458541http://doi.org/10.1063/1.458541 .
Malevanets A, Kapral R. J Chem Phys , 1999 . 110 8605 - 8613 . DOI:10.1063/1.478857http://doi.org/10.1063/1.478857 .
Mussawisade K, Ripoll M, Winkler R G, Gompper G. J Chem Phys , 2005 . 123 144905 DOI:10.1063/1.2041527http://doi.org/10.1063/1.2041527 .
Ripoll M, Winkler R G, Gompper G. Phys Rev Lett , 2006 . 96 188302 DOI:10.1103/PhysRevLett.96.188302http://doi.org/10.1103/PhysRevLett.96.188302 .
Gompper G, Ihle T, Winkler R. Adv Polym Sci , 2009 . 221 1 - 87.
Liu L, Chen J, Chen W, Li L, An L. Sci China Chem , 2014 . 57 1048 - 1052.
Ihle T, Kroll D. Phys Rev E , 2003 . 67 066705 DOI:10.1103/PhysRevE.67.066705http://doi.org/10.1103/PhysRevE.67.066705 .
Ripoll M, Winkler R G, Gompper G. Eur Phys J E , 2007 . 23 349 - 354 . DOI:10.1140/epje/i2006-10220-0http://doi.org/10.1140/epje/i2006-10220-0 .
Padding J, Louis A. Phys Rev E , 2006 . 74 031402 .
Lamura A, Gompper G, Ihle T, Kroll D M. Europhys Lett , 2001 . 56 319 - 325 . DOI:10.1209/epl/i2001-00522-9http://doi.org/10.1209/epl/i2001-00522-9 .
Huang C C, Chatterji A, Sutmann G, Gompper G, Winkler R G. J Comput Phys , 2010 . 229 68 - 177.
Chelakkot R, Winkler R G, Gompper G. Europhys Lett , 2010 . 91 14001 DOI:10.1209/0295-5075/91/14001http://doi.org/10.1209/0295-5075/91/14001 .
Wen X, Zhang D, Zhang L. Polymer , 2012 . 53 873 - 880 . DOI:10.1016/j.polymer.2011.12.048http://doi.org/10.1016/j.polymer.2011.12.048 .
Bolintineanu D S, Lechman J B, Plimpton S J, Grest G S. Phys Rev E , 2012 . 86 066703 DOI:10.1103/PhysRevE.86.066703http://doi.org/10.1103/PhysRevE.86.066703 .
Busse W F. Phys Today , 1964 . 17 32 - 41.
Metzner A B, Cohen Y, Rangel-Nafaile C. J Non-Newtonian Fluid Mech , 1979 . 5 449 - 462 . DOI:10.1016/0377-0257(79)85029-6http://doi.org/10.1016/0377-0257(79)85029-6 .
Millan J A, Jiang W, Laradji M, Wang Y. J Chem Phys , 2007 . 126 124905 DOI:10.1063/1.2711435http://doi.org/10.1063/1.2711435 .
0
浏览量
18
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构