浏览全部资源
扫码关注微信
1.青岛储能产业技术研究院 中国科学院青岛生物能源与过程研究所 青岛 266101
2.中国科学院大学材料与光电研究中心 北京 100049
3.中南大学化学化工学院 长沙 410083
E-mail: cuigl@qibebt.ac.cn
纸质出版日期:2019-9,
网络出版日期:2019-8-21,
收稿日期:2019-5-9,
修回日期:2019-6-8,
扫 描 看 全 文
张建军, 杨金凤, 吴瀚, 张敏, 刘亭亭, 张津宁, 董杉木, 崔光磊. 二次电池用原位生成聚合物电解质的研究进展[J]. 高分子学报, 2019,50(9):890-914.
Jian-jun Zhang, Jin-feng Yang, Han Wu, Min Zhang, Ting-ting Liu, Jin-ning Zhang, Shan-mu Dong, Guang-lei Cui. Research Progress of
张建军, 杨金凤, 吴瀚, 张敏, 刘亭亭, 张津宁, 董杉木, 崔光磊. 二次电池用原位生成聚合物电解质的研究进展[J]. 高分子学报, 2019,50(9):890-914. DOI: 10.11777/j.issn1000-3304.2019.19097.
Jian-jun Zhang, Jin-feng Yang, Han Wu, Min Zhang, Ting-ting Liu, Jin-ning Zhang, Shan-mu Dong, Guang-lei Cui. Research Progress of
聚合物电解质可以在很大程度上缓解甚至解决二次电池所面临的电解液泄漏、挥发、燃烧和爆炸等潜在安全问题. 但传统聚合物电解质成型工艺繁琐冗赘,且制备过程中存在溶剂挥发污染环境等缺点,原位生成聚合物电解质除可以有效解决上述安全问题外,还可以在二次电池内部形成稳定的固体电解质界面,实现界面融合,减少固/固界面阻抗,有利于提高二次电池循环寿命,具有很好的应用前景. 基于此,本综述从有无引发剂添加、引发剂种类等多角度重点阐述了原位生成聚合物电解质的制备工艺、形成机理、聚合物电解质类型及其在锂(钠、镁)等二次电池中应用的主要研究进展和现状. 最后对二次电池用原位生成聚合物电解质存在的挑战和未来可能发展趋势进行了展望.
Rechargeable batteries
which are among the most promising energy storage devices
have become a research hotspot related to energy-storage and energy-convert systems. While the rechargeable batteries based on liquid electrolytes commonly possess serious safety risks such as electrolyte leakage
volatilization
combustion
and explosion
polymer electrolytes display great potentials in ameliorating and addressing these problems. Conventional polymer electrolytes are generally prepared by the solution casting method
which is difficult to implement in actual production owing to its complicated operation and harsh conditions. In addition
the poor electrolyte/electrode interfacial contact in solid-state lithium batteries is also a common issue
mainly originating from the
ex situ
assembly technique of solid-state electrolyte. These drawbacks hinder their large-scale promotion and application. In this context have emerged the
in situ
generated polymer electrolytes
which aim at solving the above mentioned problems effectively. The general process of
in situ
preparation of the polymer electrolytes is as follows: a precursor solution consisting of monomers
lithium salts
and initiators is injected into the battery to fully wet the electrode channels and gaps
and the monomers are then polymerized
in situ
under certain external conditions to afford a gel/solid polymer rechargeable battery in one step. Compared to the traditional routes to polymer electrolytes
such
in situ
polymerization simplifies the preparation process
facilitates favorable solid electrolyte interface
and enables the electrode and electrolyte to form an integrated structure for better interfacial contact. These advantages are beneficial to an improved performance of rechargeable batteries and endow the technique with a promising application prospect. For more efficient development
it is an urgent task to review the existing process routes
reaction principles
types of polymer electrolytes
and the practical applications of
in situ
generated polymer electrolytes in rechargeable batteries (such as lithium
sodium
magnesium
etc
.). Herein
we summarize the research progress of
in situ
polymerization in significantly stabilizing the electrode/electrolyte interface and inhibiting the diffusion of intermediates. Further
we discuss the challenges and development treads of
in situ
generated polymer electrolytes
including the prospects of quasi-solid polymer electrolytes. We believe this review paper will serve as a valuable reference and theoretical guidance for researchers engaged in polymer electrolytes.
原位固化聚合物电解质二次电池界面相容性循环稳定性
In situ solidPolymer electrolytesRechargeable batteriesInterfacial compatibilityCycling stability
Wu Z, Liu K, Lv C, Zhong S, Wang Q, Liu T, Liu X, Yin Y, Hu Y, Wei D. Small , 2018 . 14 ( 22 ): 1800414 DOI:10.1002/smll.v14.22http://doi.org/10.1002/smll.v14.22 .
Abe H, Zaghib K, Tatsumi K, Higuchi S. J Power Sources , 1995 . 54 ( 2 ): 236 - 239 . DOI:10.1016/0378-7753(94)02075-Ehttp://doi.org/10.1016/0378-7753(94)02075-E .
Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y, Cho J. Angew Chem Int Ed , 2015 . 54 ( 15 ): 4440 - 4457 . DOI:10.1002/anie.201409262http://doi.org/10.1002/anie.201409262 .
Ding Y, Mu D, Wu B, Wang R, Zhao Z, Wu F. Appl Energy , 2017 . 195 586 - 599 . DOI:10.1016/j.apenergy.2017.03.074http://doi.org/10.1016/j.apenergy.2017.03.074 .
Li J, Du Z, Ruther R E, An S J, David L A, Hays K, Wood M, Phillip N D, Sheng Y, Mao C. JOM , 2017 . 69 ( 9 ): 1484 - 1496 . DOI:10.1007/s11837-017-2404-9http://doi.org/10.1007/s11837-017-2404-9 .
Nowak S, Winter M. J Electrochem Soc , 2015 . 162 ( 14 ): A2500 - A2508 . DOI:10.1149/2.0121514jeshttp://doi.org/10.1149/2.0121514jes .
Schroeder D, Hubaud A, Vaughey J. Mater Res Bull , 2014 . 49 614 - 617 . DOI:10.1016/j.materresbull.2013.10.006http://doi.org/10.1016/j.materresbull.2013.10.006 .
Hayamizu K, Akiba E. Electrochemistry , 2003 . 71 ( 12 ): 1052 - 1054.
Ghimire P, Nakamura H, Yoshio M, Yoshitake H, Abe K. Electrochemistry , 2003 . 71 ( 12 ): 1084 - 1086.
Gao J, Zhao Y S, Shi S Q, Li H. Chin Phys B , 2015 . 25 ( 1 ): 018211 .
Zheng Z S, Zhang Z T, Tang Z, Shen W. Prog Chem , 2003 . 15 ( 2 ): 101 - 106.
Xu R, Zhang S, Wang X, Xia Y, Xia X, Wu J, Gu C, Tu J. Chem Eur J , 2018 . 24 ( 23 ): 6007 - 6018 . DOI:10.1002/chem.v24.23http://doi.org/10.1002/chem.v24.23 .
Ou Q, Zhang Y, Wang Z, Yuwono J A, Wang R, Dai Z, Li W, Zheng C, Xu Z Q, Qi X. Adv Mater , 2018 . 30 ( 15 ): 1705792 DOI:10.1002/adma.v30.15http://doi.org/10.1002/adma.v30.15 .
Ramakumar S, Deviannapoorani C, Dhivya L, Shankar L S, Murugan R. Prog Mater Sci , 2017 . 88 325 - 411 . DOI:10.1016/j.pmatsci.2017.04.007http://doi.org/10.1016/j.pmatsci.2017.04.007 .
Qiu Z, Zhang Y, Xia S, Dong P. Acta Chim Sin , 2015 . 73 992 - 1001.
Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, Nan C W. Adv Mater , 2019 . 31 ( 11 ): 1806082 DOI:10.1002/adma.1806082http://doi.org/10.1002/adma.1806082 .
Zhang W, Nie J, Li F, Wang Z L, Sun C. Nano Energy , 2018 . 45 413 - 419 . DOI:10.1016/j.nanoen.2018.01.028http://doi.org/10.1016/j.nanoen.2018.01.028 .
Zhang J, Yang J, Dong T, Zhang M, Chai J, Dong S, Wu T, Zhou X, Cui G. Small , 2018 . 14 ( 36 ): 1800821 DOI:10.1002/smll.v14.36http://doi.org/10.1002/smll.v14.36 .
Dai J, Yang C, Wang C, Pastel G, Hu L. Adv Mater , 2018 . 30 ( 48 ): 1802068 DOI:10.1002/adma.v30.48http://doi.org/10.1002/adma.v30.48 .
Yu R, Bao J J, Chen T T, Zou B K, Wen Z Y, Guo X X, Chen C H. Solid State Ionics , 2017 . 309 15 - 21 . DOI:10.1016/j.ssi.2017.06.013http://doi.org/10.1016/j.ssi.2017.06.013 .
Sun C, Liu J, Gong Y, Wilkinson D P, Zhang J. Nano Energy , 2017 . 33 363 - 386 . DOI:10.1016/j.nanoen.2017.01.028http://doi.org/10.1016/j.nanoen.2017.01.028 .
Choi H, Kim H W, Ki J K, Lim Y J, Kim Y, Ahn J H. Nano Research , 2017 . 10 ( 9 ): 3092 - 3102 . DOI:10.1007/s12274-017-1526-2http://doi.org/10.1007/s12274-017-1526-2 .
Chen R J, Zhang Y B, Liu T, Xu B, Shen Y, Li L, Lin Y H, Nan C W. Solid State Ionics , 2017 . 310 44 - 49 . DOI:10.1016/j.ssi.2017.07.026http://doi.org/10.1016/j.ssi.2017.07.026 .
Rolland J, Brassinne J, Bourgeois J P, Poggi E, Vlad A, Gohy J F. J Mater Chem A , 2014 . 2 ( 30 ): 11839 - 11846 . DOI:10.1039/C4TA02327Ghttp://doi.org/10.1039/C4TA02327G .
Gerbaldi C, Nair J R, Kulandainathan M A, Kumar R S, Ferrara C, Mustarelli P, Stephan A M. J Mater Chem A , 2014 . 2 ( 26 ): 9948 - 9954 . DOI:10.1039/C4TA01856Ghttp://doi.org/10.1039/C4TA01856G .
Xu X, Hou G, Nie X, Ai Q, Liu Y, Feng J, Zhang L, Si P, Guo S, Ci L. J Power Sources , 2018 . 400 212 - 217 . DOI:10.1016/j.jpowsour.2018.08.016http://doi.org/10.1016/j.jpowsour.2018.08.016 .
Liu X, Li X, Li H, Wu H B. Chem Eur J , 2018 . 24 ( 69 ): 18293 - 18306 . DOI:10.1002/chem.v24.69http://doi.org/10.1002/chem.v24.69 .
Villaluenga I, Wujcik K H, Tong W, Devaux D, Wong D H, DeSimone J M, Balsara N P. Proc Natl Acad Sci USA , 2016 . 113 ( 1 ): 52 - 57 . DOI:10.1073/pnas.1520394112http://doi.org/10.1073/pnas.1520394112 .
Croce F, Sacchetti S, Scrosati B. J Power Sources , 2006 . 162 ( 1 ): 685 - 689 . DOI:10.1016/j.jpowsour.2006.07.038http://doi.org/10.1016/j.jpowsour.2006.07.038 .
Xi J, Huang X, Tang X. Chin Sci Bull , 2004 . 49 ( 20 ): 2129 - 2133 . DOI:10.1007/BF03185777http://doi.org/10.1007/BF03185777 .
Zhang R, Chen Y, Montazami R. Materials , 2015 . 8 ( 5 ): 2735 - 2748 . DOI:10.3390/ma8052735http://doi.org/10.3390/ma8052735 .
Lee Y S, Ju S H, Kim J H, Hwang S S, Choi J M, Sun Y K, Kim H, Scrosati B, Kim D W. Electrochem Commun , 2012 . 17 18 - 21 . DOI:10.1016/j.elecom.2012.01.008http://doi.org/10.1016/j.elecom.2012.01.008 .
Kim H S, Periasamy P, Moon S I. J Power Sources , 2005 . 141 ( 2 ): 293 - 297 . DOI:10.1016/j.jpowsour.2004.08.007http://doi.org/10.1016/j.jpowsour.2004.08.007 .
Appetecchi G, Romagnoli P, Scrosati B. Electrochem Commun , 2001 . 3 ( 6 ): 281 - 284 . DOI:10.1016/S1388-2481(01)00137-0http://doi.org/10.1016/S1388-2481(01)00137-0 .
Kim D W, Oh B, Park J H, Sun Y K. Solid State Ionics , 2000 . 138 ( 1-2 ): 41 - 49 . DOI:10.1016/S0167-2738(00)00763-3http://doi.org/10.1016/S0167-2738(00)00763-3 .
Song J, Wang Y, Wan C C. J Power Sources , 1999 . 77 ( 2 ): 183 - 197 . DOI:10.1016/S0378-7753(98)00193-1http://doi.org/10.1016/S0378-7753(98)00193-1 .
Kim D W, Oh B K, Choi Y M. Solid State Ionics , 1999 . 123 ( 1-4 ): 243 - 249 . DOI:10.1016/S0167-2738(99)00099-5http://doi.org/10.1016/S0167-2738(99)00099-5 .
Cho Y G, Hwang C, Cheong D S, Kim Y S, Song H K. Adv Mater , 2019 . 31 ( 20 ): 1804909 DOI:10.1002/adma.v31.20http://doi.org/10.1002/adma.v31.20 .
Fan Huanhuan(范欢欢), Zhou Dong(周栋), Fan Lizhen(范丽珍), Shi Qiao(石桥). J Chin Ceram Soc(硅酸盐学报) , 2013 . 41 ( 2 ): 134 - 139 . DOI:10.7521/j.issn.0454-5648.2013.02.02http://doi.org/10.7521/j.issn.0454-5648.2013.02.02 .
Chai J, Liu Z, Ma J, Wang J, Liu X, Liu H, Zhang J, Cui G, Chen L. Adv Sci , 2017 . 4 ( 2 ): 1600377 DOI:10.1002/advs.201600377http://doi.org/10.1002/advs.201600377 .
Ju J, Wang Y, Chen B, Ma J, Dong S, Chai J, Qu H, Cui L, Wu X, Cui G. ACS Appl Mater Interfaces , 2018 . 10 ( 16 ): 13588 - 13597 . DOI:10.1021/acsami.8b02240http://doi.org/10.1021/acsami.8b02240 .
Chai J, Liu Z, Zhang J, Sun J, Tian Z, Ji Y, Tang K, Zhou X, Cui G. ACS Appl Mater Interfaces , 2017 . 9 ( 21 ): 17897 - 17905 . DOI:10.1021/acsami.7b02844http://doi.org/10.1021/acsami.7b02844 .
He W, Cui Z, Liu X, Cui Y, Chai J, Zhou X, Liu Z, Cui G. Electrochim Acta , 2017 . 225 151 - 159 . DOI:10.1016/j.electacta.2016.12.113http://doi.org/10.1016/j.electacta.2016.12.113 .
Qin B, Liu Z, Zheng J, Hu P, Ding G, Zhang C, Zhao J, Kong D, Cui G. J Mater Chem A , 2015 . 3 ( 15 ): 7773 - 7779 . DOI:10.1039/C5TA00216Hhttp://doi.org/10.1039/C5TA00216H .
Susan M A B H, Kaneko T, Noda A, Watanabe M. J Mater Chem A , 2005 . 127 ( 13 ): 4976 - 4983.
Zhou Y, Xie S, Chen C. J Mater Sci , 2006 . 41 ( 22 ): 7492 - 7497 . DOI:10.1007/s10853-006-0803-3http://doi.org/10.1007/s10853-006-0803-3 .
Ma Y, Ma J, Chai J, Liu Z, Ding G, Xu G, Liu H, Chen B, Zhou X, Cui G. ACS Appl Mater Interfaces , 2017 . 9 ( 47 ): 41462 - 41472 . DOI:10.1021/acsami.7b11342http://doi.org/10.1021/acsami.7b11342 .
Zheng J, Zhao Y, Feng X, Chen W, Zhao Y. J Mater Chem A , 2018 . 6 ( 15 ): 6559 - 6564 . DOI:10.1039/C8TA00530Chttp://doi.org/10.1039/C8TA00530C .
Zheng J, Li X, Yu Y, Zhen X, Song Y, Feng X, Zhao Y. J Solid State Electrochem , 2014 . 18 ( 7 ): 2013 - 2018 . DOI:10.1007/s10008-014-2438-7http://doi.org/10.1007/s10008-014-2438-7 .
Niu C, Zhang M, Chen G, Cao B, Shi J, Du J, Chen Y. Electrochim Acta , 2018 . 283 349 - 356 . DOI:10.1016/j.electacta.2018.06.169http://doi.org/10.1016/j.electacta.2018.06.169 .
Duan H, Yin Y X, Zeng X X, Li J Y, Shi J L, Shi Y, Wen R, Guo Y G, Wan L J. Energy Storage Mater , 2018 . 10 85 - 91 . DOI:10.1016/j.ensm.2017.06.017http://doi.org/10.1016/j.ensm.2017.06.017 .
Fan W, Li N W, Zhang X, Zhao S, Cao R, Yin Y, Xing Y, Wang J, Guo Y G, Li C. Adv Sci , 2018 . 5 ( 9 ): 1800559 DOI:10.1002/advs.201800559http://doi.org/10.1002/advs.201800559 .
Liu M, Jiang H, Ren Y, Zhou D, Kang F, Zhao T. Electrochim Acta , 2016 . 213 871 - 878 . DOI:10.1016/j.electacta.2016.08.015http://doi.org/10.1016/j.electacta.2016.08.015 .
Liu M, Zhou D, He Y B, Fu Y, Qin X, Miao C, Du H, Li B, Yang Q H, Lin Z. Nano Energy , 2016 . 22 278 - 289 . DOI:10.1016/j.nanoen.2016.02.008http://doi.org/10.1016/j.nanoen.2016.02.008 .
Bok T, Cho S J, Choi S, Choi K H, Park H, Lee S Y, Park S. RSC Adv , 2016 . 6 ( 9 ): 6960 - 6966 . DOI:10.1039/C5RA24256Hhttp://doi.org/10.1039/C5RA24256H .
Zhou D, Liu R, Zhang J, Qi X, He Y B, Li B, Yang Q H, Hu Y S, Kang F. Nano Energy , 2017 . 33 45 - 54 . DOI:10.1016/j.nanoen.2017.01.027http://doi.org/10.1016/j.nanoen.2017.01.027 .
Zhou D, He Y B, Cai Q, Qin X, Li B, Du H, Yang Q H, Kang F. J Mater Chem A , 2014 . 2 ( 47 ): 20059 - 20066 . DOI:10.1039/C4TA04504Ahttp://doi.org/10.1039/C4TA04504A .
Hwang S S, Cho C G, Kim H. Electrochem Commun , 2010 . 12 ( 7 ): 916 - 919 . DOI:10.1016/j.elecom.2010.04.020http://doi.org/10.1016/j.elecom.2010.04.020 .
Zhang J, Wen H, Yue L, Chai J, Ma J, Hu P, Ding G, Wang Q, Liu Z, Cui G. Small , 2017 . 13 ( 2 ): 1601530 DOI:10.1002/smll.v13.2http://doi.org/10.1002/smll.v13.2 .
Cui Y, Liang X, Chai J, Cui Z, Wang Q, He W, Liu X, Liu Z, Cui G, Feng J. Adv Sci , 2017 . 4 ( 11 ): 1700174 DOI:10.1002/advs.201700174http://doi.org/10.1002/advs.201700174 .
Liu F Q, Wang W P, Yin Y X, Zhang S F, Shi J L, Wang L, Zhang X D, Zheng Y, Zhou J J, Li L. Sci Adv , 2018 . 4 ( 10 ): eaat5383 DOI:10.1126/sciadv.aat5383http://doi.org/10.1126/sciadv.aat5383 .
Huang S, Cui Z, Qiao L, Xu G, Zhang J, Tang K, Liu X, Wang Q, Zhou X, Zhang B. Electrochim Acta , 2019 . 299 820 - 827 . DOI:10.1016/j.electacta.2019.01.039http://doi.org/10.1016/j.electacta.2019.01.039 .
Du A, Zhang H, Zhang Z, Zhao J, Cui Z, Zhao Y, Dong S, Wang L, Zhou X, Cui G. Adv Mater , 2019 . 31 ( 11 ): 1805930 DOI:10.1002/adma.1805930http://doi.org/10.1002/adma.1805930 .
Guan H Y, Lian F, Xi K, Ren Y, Sun J L, Kumar R V. J Power Sources , 2014 . 245 95 - 100 . DOI:10.1016/j.jpowsour.2013.06.120http://doi.org/10.1016/j.jpowsour.2013.06.120 .
Cui Y, Chai J, Du H, Duan Y, Xie G, Liu Z, Cui G. ACS Appl Mater Interfaces , 2017 . 9 ( 10 ): 8737 - 8741 . DOI:10.1021/acsami.6b16218http://doi.org/10.1021/acsami.6b16218 .
Lei X, Liu X, Ma W, Cao Z, Wang Y, Ding Y. Angew Chem Inter Ed , 2018 . 57 ( 49 ): 16131 - 16135 . DOI:10.1002/anie.201810882http://doi.org/10.1002/anie.201810882 .
Kim J K, Scheers J, Park T J, Kim Y. ChemSusChem , 2015 . 8 ( 4 ): 636 - 641 . DOI:10.1002/cssc.v8.4http://doi.org/10.1002/cssc.v8.4 .
Meng Yabin(孟亚斌), Yang Yajiang(杨亚江). Acta Chimica Sinica(化学学报) , 2004 . 62 1509 - 1513.
Ito S, Unemoto A, Ogawa H, Tomai T, Honma I. J Power Sources , 2012 . 208 271 - 275 . DOI:10.1016/j.jpowsour.2012.02.049http://doi.org/10.1016/j.jpowsour.2012.02.049 .
Lee Y W, Shin W K, Kim D W. Solid State Ionics , 2014 . 255 6 - 12 . DOI:10.1016/j.ssi.2013.11.010http://doi.org/10.1016/j.ssi.2013.11.010 .
Zhou Y, Xie S, Ge X, Chen C, Amine K. J Appl Electrochem , 2004 . 34 ( 11 ): 1119 - 1125 . DOI:10.1007/s10800-004-2726-5http://doi.org/10.1007/s10800-004-2726-5 .
Wang Y, Qiu J, Peng J, Li J, Zhai M. J Mater Chem A , 2017 . 5 ( 24 ): 12393 - 12399 . DOI:10.1039/C7TA02291Chttp://doi.org/10.1039/C7TA02291C .
Kong L, Zhan H, Li Y, Zhou Y. Electrochem Commun , 2007 . 9 ( 10 ): 2557 - 2563 . DOI:10.1016/j.elecom.2007.08.001http://doi.org/10.1016/j.elecom.2007.08.001 .
Kong L, Zhan H, Li Y, Zhou Y. Electrochim Acta , 2008 . 53 ( 16 ): 5373 - 5378 . DOI:10.1016/j.electacta.2008.02.098http://doi.org/10.1016/j.electacta.2008.02.098 .
Hu Z, Zhang S, Dong S, Li Q, Cui G, Chen L. Chem Mater , 2018 . 30 ( 12 ): 4039 - 4047 . DOI:10.1021/acs.chemmater.8b00722http://doi.org/10.1021/acs.chemmater.8b00722 .
Chai J, Chen B, Xian F, Wang P, Du H, Zhang J, Liu Z, Zhang H, Dong S, Zhou X. Small , 2018 . 14 ( 37 ): 1802244 DOI:10.1002/smll.v14.37http://doi.org/10.1002/smll.v14.37 .
Liu X, Ding G, Zhou X, Li S, He W, Chai J, Pang C, Liu Z, Cui G. J Mater Chem A , 2017 . 5 ( 22 ): 11124 - 11130 . DOI:10.1039/C7TA02423Ahttp://doi.org/10.1039/C7TA02423A .
Qiao L, Cui Z, Chen B, Xu G, Zhang Z, Ma J, Du H, Liu X, Huang S, Tang K. Chem Sci , 2018 . 9 ( 14 ): 3451 - 3458 . DOI:10.1039/C8SC00041Ghttp://doi.org/10.1039/C8SC00041G .
Jiang J, Gao D, Li Z, Su G. React Funct Polym , 2006 . 66 ( 10 ): 1141 - 1148 . DOI:10.1016/j.reactfunctpolym.2006.02.004http://doi.org/10.1016/j.reactfunctpolym.2006.02.004 .
Yi Q, Zhang W, Li S, Li X, Sun C. ACS Appl Mater Interfaces , 2018 . 10 ( 41 ): 35039 - 35046 . DOI:10.1021/acsami.8b09991http://doi.org/10.1021/acsami.8b09991 .
Zhou D, He Y B, Liu R, Liu M, Du H, Li B, Cai Q, Yang Q H, Kang F. Adv Energy Mater , 2015 . 5 ( 15 ): 1500353 DOI:10.1002/aenm.201500353http://doi.org/10.1002/aenm.201500353 .
Xu G, Kushima A, Yuan J, Dou H, Xue W, Zhang X, Yan X, Li J. Energy Environ Sci , 2017 . 10 ( 12 ): 2544 - 2551 . DOI:10.1039/C7EE01898Chttp://doi.org/10.1039/C7EE01898C .
Zhao Q, Liu X, Stalin S, Khan K, Archer L A. Nat Energy , 2019 . 4 365 - 373.
Hu P, Duan Y, Hu D, Qin B, Zhang J, Wang Q, Liu Z, Cui G, Chen L. ACS Appl Mater Interfaces , 2015 . 7 ( 8 ): 4720 - 4727 . DOI:10.1021/am5083683http://doi.org/10.1021/am5083683 .
Chai J, Zhang J, Hu P, Ma J, Du H, Yue L, Zhao J, Wen H, Liu Z, Cui G. J Mater Chem A , 2016 . 4 ( 14 ): 5191 - 5197 . DOI:10.1039/C6TA00828Chttp://doi.org/10.1039/C6TA00828C .
Hou Zhongke(候仲轲), Chen Ligong(陈立功), Xue Fuhua(薛福华), Song Jian(宋健). Chemistry(化学通报) , 2005 . ( 9 ): 645 - 649.
Kong Lingbo(孔令波), Zhan Hui(詹晖), Li Yajuan(李亚娟), Zhou Yunhong(周运鸿). Acta Chimica Sinica(化学学报) , 2008 . 66 621 - 626.
0
浏览量
196
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构