纸质出版日期:2019-12,
网络出版日期:2019-7-12,
收稿日期:2019-6-4,
修回日期:2019-6-11
扫 描 看 全 文
引用本文
阅读全文PDF
为实现动态保压注塑成型(OPIM)的智能精密制造,以哑铃型拉伸试样构建几何模型,以Dynamic feed系统还原保压阶段中复杂的动态流动场,运用Moldflow模拟仿真出OPIM全过程. 通过与传统注塑成型(CIM)的对比研究,探究了OPIM在保压阶段的熔体流动情况、皮芯结构上熔体温度以及剪切速率分布与大小的变化. 通过二维广角X射线衍射(2D-WAXD)、扫描电子显微镜(SEM)以及显微镜实验对模拟结果进行验证. 结果表明,在OPIM过程中,熔体在较低黏度下可反复通过型腔,在型腔厚度方向上产生温度梯度,形成强剪切场,进而诱导分子链伸直,形成串晶结构,从而提高了OPIM制品性能,模拟与实验结果一致.
To realize the intelligent precision manufacturing of oscillating packing injection molding (OPIM), the whole process of OPIM was creatively simulated by computer-aided technology, Moldflow. In the process of simulation, the model was built as a dumbbell-shaped tensile spline and the complex dynamic fluctuating flow field caused by reciprocating piston motion in packing stage was initially emulated by the Dynamic feed system. According to complex changes of temperature, pressure and extra shear field, cross WLF model were selected as the constitutive laws for HDPE in this study. The melt flow distribution, variation of the melt temperature and shear field in sample were investigated in OPIM simulation, meanwhile the results were also compared with those of conventional injection molding (CIM) simulation. The results show that, in the OPIM process, HDPE melts could repeatedly pass through the cavity at lower viscosity by the strong reciprocating motion of pistons, creating the temperature gradient at the thickness direction and forming a strong shear field, thus inducing the molecular chains to straighten and further form the shish-kebab structures. Finally, The real morphology and structure of OPIM and CIM samples were characterized by 2D-WAXD、SEM. The results show a higher orientation and more shish-kebab structure in OPIM compared with those in CIM. Melt flow traces observed by microscopy confirmed the multiple melt flow under the action of pistons in cavity. The simulation results are in good agreement with our experiment results. Finally, this article provide the theoretical OPIM process window for high-performance sample processing and new simulation ideas for special injection moldings additional external force field.
We creatively simulated OPIM using Moldflow, in which dynamic feed system emulated fluctuating melt pressure caused by reciprocating pistons motion in packing. The melt flow pattern and the shear rate of dynamic change were explored, and the correctness of the numerical calculation was verified by experiments. This study provides the theoretical OPIM process window and new simulation ideas.
21世纪以来,塑料工业正朝着高标准化的目标健康快速发展[
大量研究表明,可以利用CAE模流分析软件对注塑成型过程进行高时间,高空间的模拟仿真,以获取高通量的熔体相关数据[
本文利用Cross-WLF本构方程描述了受温度、压力以及剪切速率变化的熔体黏度. 运用Moldflow模流分析软件中Dynamic feed功能模拟出拉伸试样在保压阶段于特殊热流道模具下的复杂流动场,探究OPIM中熔体的流动情况、熔体温度以及剪切速率大小及分布的变化,并对模拟结果进行了实验验证,进而为动态保压注塑成型流动情况的探究以及高性能制件工作窗口的选定提供相关依据,为动态保压注塑成型以及在附加流动场下相关注塑成型的模拟仿真提供新的思路.
利用Moldflow模流分析软件对动态保压注塑成型过程进行数值模拟分析. 本次模拟制件尺寸为4 mm × 6 mm × 110 mm的拉伸样条(如
Fig 1 (a) Mold structure diagram in Moldflow; (b) Geometric structure of tension splines and characterized cross section diagram; (c) Mold runner structure, cooling channels and heating pipes in distributing diagram (the meshing red parts-hot runner or hot nozzle; not meshing parts-heating pipes; the blue parts-cooling channels)
鉴于动态保压注塑成型(OPIM)对于聚乙烯的研究已较为成熟,本次模拟选用HDPE(牌号:Hostalen GM 5010 T2, Targor)作为成型模拟材料,熔融指数(MFI)为0.84 g/10min (190 °C, 5 kg),固化温度112 °C,比热CP为3000 J/(kg·°C) (210 °C),热导率k为0.27 W/(m·°C) (210 °C).
1.3 数学黏度模型
假设熔体为不可压缩性流体,不考虑惯性作用,其流动表现为非等温牛顿流体行为,要求完成模具充填以及熔体降温直至固化期间的动态保压剪切过程. 利用Cross-WLF本构模型[
η=η01+(η0˙γτ∗)1−n 1
而零切黏度η0则表示为
η0=D1exp[−A1(T−T∗)A2+(T−T∗)] 2
其中玻璃化转变温度T∗为
T∗=D2+D3p 3
上述所有式中η为熔体黏度(Pa·s);η0为零切黏度;˙γ为剪切速率;τ∗为临界剪切变稀应力;n为幂律指数;T为温度(K);T∗为玻璃化转变温度;p为压力(Pa);A1,A2,D1,D2,D3为拟合数据系数. 通过数据拟合,其成型模拟材料的物性参数为η = 20926.3 Pa·s;n = 0.3785;A1 = 17.266;A2 = 51.6 K;D1 = 1.2909 × 1011 Pa·s;D2 = 153.15 K;D3 = 0 K·Pa–1.
1.4.1 网格划分
熔体在动态保压过程中会随着时间与压力的变化而变化. 为了更好地探究沿厚度分布的熔体温度与剪切速率的变化趋势,为运用Dynamic feed功能模拟活塞运动过程,本模拟采用双层面网格进行网格划分,并沿制件的厚度方向划分为20层. 制件形状较为规整,规格较小,设定网格边长为0.5 mm,三角形单元数量为14612.
1.4.2 工艺参数设定
为进一步模拟注塑的实际过程,将海天注塑机的相关参数添加入模拟信息中. 并结合实际情况,设定
Fig 2 Injection molding cycle
Fig 3 Oscillating packing injection molding schematic diagram
实际参数设定:熔体温度200 °C;热流道温度180 °C;保压I、II、III阶段压力分别是10、20 和30 MPa;保压I、II、III阶段时间均是60 s;振动油压12 MPa;振动间歇时间2 s. 利用活塞式油缸的作用原理,设定回油背压为0,则活塞杆的前进对熔体产生了液压推力,促使活塞料腔熔体流动,而随着动态保压时间的增加,活塞在实际生产中下压的行程会逐渐缩短. 我们可以理解为熔体一旦冷却会使得活塞行程缩短,此时熔体流动的推动力与液压推动力相等,即满足计算公式如下所示:
p1A1=P=p2A2 4
式中P为对熔体的液压推力;p1为油缸的进油压力;p2为熔体压力;A1为油缸活塞有效工作面积;A2为A、B活塞有效工作面积. 油缸活塞直径ϕ为80 mm,进油压力为12 MPa以及A、B活塞直径ϕ为25 mm(
为简化模拟仿真,以15 MPa注塑压力快速完成充填阶段. 为更好地阐述OPIM模拟数据,同时对无活塞运动的静态试样(CIM)进行模拟,并与之对比. 动态试样(OPIM)与静态试样(CIM)活塞腔的保压压力变化分别如
Fig 4 (a) Melt pressure curve in packing of Piston chambers of OPIM; (b) Melt pressure curve in packing of Piston chambers of CIM
由于与传统注塑成型的注塑周期组分比重不同[
在
Fig 5 Flow rate of hot nozzle in packing of CIM and OPIM respectively
可将熔体动态保压阶段流动近似看作柱塞式挤出的机头口模流动,可得知物料动态保压循环流动的流率满足以下公式[
Qk=K⋅Δpkη0k 5
其中Δpk为物料的压力降;η0k为物料在流动区内的黏度;K为流通系数,与料腔、热流道、型腔几何参数以及流动液体类型有关,本文中视为常量. 随着动态保压阶段活塞的往复运动,熔体经过型腔受到冷却作用,进而熔体温度降低而η0k提高. 为保持恒定的流动速率Qk,则需要更大的压力降Δpk. 但当活塞行程开始缩短时,活塞所提供的熔体压力恒定,即Δpk保持恒定,从而随着冷却因素的反复作用,循环流动速率Qk不断降低至0而无法维持动态流动场.
对于传统注塑成型(CIM),高温熔体在高注塑压力下快速填充模腔,与模具壁接触的皮层因高应力、高应变速率与快冷却而保留下高取向结构,芯层由于较低剪切应力与较慢冷却速率,分子链充分回复呈现低取向结构,进而形成了注塑制件典型的皮芯结构[
Fig 6 The melt temperature of the skin-core structure of OPIM and CIM respectively (The characterized the three layers of skin-core structure are yellow points in
为进一步探究不同成型方式的OPIM的皮芯结构,探测了其3层熔体温度的动态数值. 相比于CIM皮芯结构的熔体温度,由于活塞往复运动形成了动态流动场,OPIM各层熔体温度曲线不同于热喷嘴流动速率规整的矩形波动(见
Fig 7 The melt temperature of hot nozzle and the shear layer of sample of OPIM
鉴于模拟成型材料的固化温度为112 °C,上述反复受热的循环流动熔体降低了型腔熔体冷却速率(见
对于OPIM与CIM,已证明熔体沿厚度方向上存在温度梯度(见
Fig 8 Local shear rate along the thickness direction of sample (see
正是动态保压注塑成型的强剪切场促使制品呈现出高取向结构甚至生成致密的shish-kebab结构,从而可大幅度提高其力学性能,达到增强增韧效果. 伸直取向的分子链是形成shish前驱体的基本结构[
选用与模拟成型材料流动行为相似且熔融指数相近的HDPE 5000 s作为实验材料. 通过动态保压注塑成型,设定同1.3.2节一致的工艺参数制备静态试样(CIM)与动态试样(OPIM).
3.1.1 光学显微镜
从试样横截面处取薄片,利用抛光机进行抛光,控制其厚度为0.5 mm左右. 将其置于光幕上利用光学显微镜对截面情况进行拍摄.
3.1.2 扫描电子显微镜
将样品在液氮中脆断得到断面位置,利用2%的酸性溶液完成刻蚀. 对所有样品表面进行喷金处理,利用场发射扫描电子显微镜(SEM) (Model 450, FEI company, USA)对样品上述3层(位置如
3.1.3 二维广角X射线衍射(2D-WAXD)
利用德国Bruker D8X射线衍射仪,在40 kV与40 mA下由CuKα光源以波长0.154 nm对样品进行衍射获取2D-WAXD衍射图. 其测量点为上述3层结构,层间相距1 mm (位置如
3.2.1 流动行为
晶体结构受温度与外力场作用影响,而不同的晶体结构因堆叠方式、尺寸大小、结晶程度会呈现不同的透光度. 在
Fig 9 The optical images of cross sections of OPIM (a) and CIM (b) respectively
对于OPIM试样,由于受动态循环流动场与冷却的复合作用,其呈现对称的年轮状流动痕迹(见
Fig 10 Melt flow diagram in cross section of (a) OPIM and (b) CIM (The rainbow color indicates the sequence of melt flows, such as red-latest injected melt)
3.2.2 形貌结果
利用2D-WAXD进一步分析模拟所得动态强剪切场下聚合物3层分子链的取向结构. 由
Fig 11 SEM and 2D-WAXD image in the three layers (characterized the three yellow points in
CIM其过渡层与内层的衍射图均为均匀衍射环,主要呈现各向同性(见
而OPIM三层均出现聚焦衍射弧,且在过渡层与芯层出现聚焦亮斑,分子链沿熔体流动方向获得高取向结构,其SEM图均出现shish-kebab结构,正是在高剪切场下(
本研究中建立了动态保压注塑成型模型,首次提出运用模流分析软件(Moldflow)的Dynamic feed功能完成了振动单元内活塞往复相向运动所产生的熔体循环流动的模拟设定. 通过对静态试样CIM与动态试样OPIM皮芯结构的动态数值仿真,逼真地模拟出了动态保压注塑成型全过程,并探究了过程中熔体相关数据的变化,最终对模拟结果进行了实验验证.
(1)经模拟进一步证实,动态保压阶段熔体流动过程中,即熔体在活塞作用下注入型腔并将型腔内原有的低温熔体推入另一活塞料腔内. 如此循环流动降低了型腔内熔体冷却速率,在厚度方向上产生了更大的温度梯度,形成了熔体动态强剪切场.
(2)提出在保压后期活塞无法下压运动,即熔体停止流动时,流动区域熔体并没有固化,仅为低温状态下高黏度熔体.
(3)在温度梯度与强剪切场的复合作用下,模拟出的OPIM制件具有更为明显的皮芯结构与更厚的剪切层(即过渡层).
Li Jing(李静). China Plastics Industry(塑料工业) , 2017 . 45 ( 2 ): 21 - 23, 28 . DOI:10.3969/j.issn.1005-5770.2017.02.005 . [百度学术]
Liao Zhengpin(廖正品). China Plastics Industry(塑料工业) , 2002 . 30 ( 4 ): 1 - 6 . DOI:10.3321/j.issn:1005-5770.2002.04.001 . [百度学术]
Du Jinsong(杜金松), Cao Jianguo(曹建国), Li Ning(李宁), Zhao Wanqian(赵琬倩), Shen Kaizhi(申开智). Journal of Functional Materials(功能材料) , 2015 . 46 ( 15 ): 15133 - 15137 . DOI:10.3969/j.issn.1001-9731.2015.15.026 . [百度学术]
Zhang Z C, Deng L, Lei J, Li Z M. Polymer , 2015 . 78 120 - 133 . DOI:10.1016/j.polymer.2015.09.070 . [百度学术]
Zhang G, Jiang L, Shen K, Guan Q. J App Polym Sci , 2015 . 71 ( 5 ): 799 - 804. [百度学术]
Wang Bo(王波). Plastics Science and Technology(塑料科技) , 2015 . 43 ( 6 ): 75 - 78. [百度学术]
Wang Kejian(王克俭), Cao Guorong(曹国荣), Yang Guangwei(杨光威), Liu Shuncheng(刘顺城). Polym Mater Sci Eng(高分子材料科学与工程) , 2018 . 34 ( 2 ): 88 - 92. [百度学术]
Park H S, Dang X P. Procedia Manuf , 2017 . 10 48 - 59 . DOI:10.1016/j.promfg.2017.07.020 . [百度学术]
Zhai Ming(翟明), Gu Yuanxian(顾元宪), Shen Changyu(申长雨). Acta Polymerica Sinica(高分子学报) , 2003 . ( 1 ): 35 - 38 . DOI:10.3321/j.issn:1000-3304.2003.01.007 . [百度学术]
Guerrier P, Tosello G, Hattel J H. Cirp J Manuf Sci Technol , 2017 . 16 12 - 20. [百度学术]
Tao Siping(陶四平), Fu Xiaorong(付晓蓉), Yang Mingbo(杨鸣波), Yu Ruize(于润泽). Acta Polymerica Sinica(高分子学报) , 2005 . ( 1 ): 8 - 13 . DOI:10.3321/j.issn:1000-3304.2005.01.003 . [百度学术]
Zhou H, Zhang Y, Wen J, Cui S. P I Mech Eng B-J Eng , 2010 . 224 ( 4 ): 653 - 662 . DOI:10.1243/09544054JEM1407 . [百度学术]
Huang Xian(黄先). China Plastics Industry(塑料工业) , 2011 . 39 ( 7 ): 50 - 52. [百度学术]
Li Jinguo(李金国), Li kang(林康), Huang Xiaoliang(黄小良), Guo Mei(郭梅), Jin Mingyu(金明宇). China Plastics Industry(塑料工业) , 2012 . 40 ( 12 ): 54 - 58 . DOI:10.3969/j.issn.1005-5770.2012.12.013 . [百度学术]
Peydró M A, Parres F, Crespo J E, Juárez D. J Appl Polym Sci , 2015 . 120 ( 4 ): 2400 - 2410. [百度学术]
Xian Z S, Ming H, Zhen F Z, Chang Y S. Adv Mater Res , 2011 . 189-193 2103 - 2106. [百度学术]
Wu Qihua(吴其晔), Wu Jingan(巫静安). Polymer Rheology(高分子材料流变学). 2nd edition. Beijing(北京): Higher Education Press(高等教育出版社), 2015. 244 – 245
[百度学术]Yin X, Chen C, Zhong G J, Xu L, Tang J H, Ji X, Hsiao B S, Li Z M.. J Phys Chem B , 2011 . 115 ( 23 ): 7497 - 7504 . DOI:10.1021/jp1118162 . [百度学术]
Ma Lihua(马丽华), Sheng Lijun(盛利军), Zhang Zhen(张振), Teng Yan(滕岩). Eng Plast Appl(工程塑料应用) , 2014 . ( 7 ): 127 - 131 . DOI:10.3969/j.issn.1001-3539.2014.07.029 . [百度学术]
Li J, Nie Y J, Yu M, Hu W B. Chinese J Polym Sci , 2013 . 31 ( 11 ): 1590 - 1598 . DOI:10.1007/s10118-013-1354-0 . [百度学术]
SOMANI, Rajesh H, Yang L, Zhu L, HSIAO, Benjamin S. Polymer , 2005 . 46 ( 20 ): 8587 - 8623 . DOI:10.1016/j.polymer.2005.06.034 . [百度学术]
Graebling D, Muller R, Palierne J F. Macromolecules , 1993 . 26 ( 2 ): 320 - 329 . DOI:10.1021/ma00054a011 . [百度学术]
Zhou S Y, Niu B, Xie X L, Ji X, Zhong G J, Hsiao B S, Li Z M. ACS Appl Mater Interfaces , 2017 . 9 ( 11 ): 10148 - 10159 . DOI:10.1021/acsami.7b00479 . [百度学术]
Keum J K, Burger C, Zuo F, Hsiao B S. Polymer , 2007 . 48 ( 15 ): 4511 - 4519 . DOI:10.1016/j.polymer.2007.05.057 . [百度学术]
77
浏览量
18
下载量
1
CSCD
相关文章
相关作者
相关机构