浏览全部资源
扫码关注微信
华南理工大学材料科学与工程学院 广州 510640
E-mail: psbcguo@scut.edu.cn Bao-chun Guo, E-mail: psbcguo@scut.edu.cn
纸质出版日期:2020-2,
网络出版日期:2019-9-6,
收稿日期:2019-7-12,
修回日期:2019-7-28,
扫 描 看 全 文
张丽洁, 黄晶, 吴思武, 唐征海, 郭宝春. 可变形微区增强丁苯橡胶及其机理[J]. 高分子学报, 2020,51(2):198-204.
Li-jie Zhang, Jing Huang, Si-wu Wu, Zheng-hai Tang, Bao-chun Guo. Reinforcing Styrene-Butadiene Rubber with Deformable Domains and Related Mechanisms[J]. Acta Polymerica Sinica, 2020,51(2):198-204.
张丽洁, 黄晶, 吴思武, 唐征海, 郭宝春. 可变形微区增强丁苯橡胶及其机理[J]. 高分子学报, 2020,51(2):198-204. DOI: 10.11777/j.issn1000-3304.2019.19135.
Li-jie Zhang, Jing Huang, Si-wu Wu, Zheng-hai Tang, Bao-chun Guo. Reinforcing Styrene-Butadiene Rubber with Deformable Domains and Related Mechanisms[J]. Acta Polymerica Sinica, 2020,51(2):198-204. DOI: 10.11777/j.issn1000-3304.2019.19135.
基于丁腈橡胶中腈基与金属离子的配位作用,设计了一种全新的含可变形微区的橡胶,即金属配位交联丁腈橡胶(NBR)作为可变形微区增强丁苯橡胶. 随着可变形微区中配位键含量的提升,橡胶的强度和模量快速提高. 引入20 wt%的丁腈橡胶,丁苯橡胶的强度和模量分别提升2.6倍和3.2倍. 这一体系的增强机理主要是金属配位交联NBR作为强但可变形微区,一方面模量更高的微区由于流体力学效应,使得橡胶整体模量提高;另一方面,在外力作用下,应力通过强的界面相互作用传递到微区,致使其在样品断裂之前发生强迫高弹形变,耗散机械能,从而显著增强橡胶. 微区中强迫高弹形变可通过高温松弛回复,从而恢复力学性能. 本工作为通过可变形微区的设计实现非极性橡胶的增强提供了一种新途径.
In the present work
based on the coordination capability of nitrile groups in nitrile rubber (NBR) with metal ions
a novel type of rubber material with sacrificial domains was designed. Specifically
copper sulfate (CuSO
4
) and vulcanization package were introduced into styrene-butadiene rubber (SBR)/NBR blend by mechanical mixing and hot pressing. As a result
SBR with sulfur crosslinkings are formed as continous phases while the NBR mainly crosslinked by Cu(II)-nitrile coordination bonds are acted as dispersed phases
which are used as deformable domains to reinforce SBR. With the increasing concentration of coordination bonds in dispersed phase
both strength and modulus of the rubber improve rapidly. When 20 wt% NBR was introduced
the strength and modulus of SBR are increased by 2.6-fold and 3.2-fold
respectively. The significant reinforcing effect of this system is attributed to the strong yet deformable domains. The strong domains have hydrodynamic effect
which greatly improve the moduli of the samples. On the other hand
upon external stress
the loading can be rapidly transferred from SBR matrix to the domains owning to strong interfacial interactions
forcing the domains to develop high-elastic deformation prior to the rupture of SBR chains and dissipate mechanical energy
thus significantly enhancing the toughness of the rubber. This forced high-elastic deformation in domains can be recoverd through relaxation at a high temperature to fully restore the mechanical properties. Overall
this work provides a new way for the reinforcement of non-polar rubber through the design of deformable domains.
非极性橡胶可变形微区配位键增强
Non-polar rubberDeformable domainsCoordination bondReinforcement
Bitinis N, Hernandez M, Verdejo R, Kenny J M, LopezManchado M A. Adv Mater , 2011 . 23 5229 - 5236 . DOI:10.1002/adma.201101948http://doi.org/10.1002/adma.201101948 .
Tang Z H, Huang J, Wu X H, Guo B C, Zhang L Q, Liu F. Ind Eng Chem Res , 2015 . 54 10747 - 10756 . DOI:10.1021/acs.iecr.5b03146http://doi.org/10.1021/acs.iecr.5b03146 .
Guo B C, Tang Z H, Zhang L Q. Prog Polym Sci , 2016 . 61 29 - 66 . DOI:10.1016/j.progpolymsci.2016.06.001http://doi.org/10.1016/j.progpolymsci.2016.06.001 .
Zhang C F, Tang Z H, Guo B C, Zhang L Q. Compos Sci Technol , 2018 . 156 70 - 77 . DOI:10.1016/j.compscitech.2017.12.020http://doi.org/10.1016/j.compscitech.2017.12.020 .
Neal J A, Mozhdehi D, Guan Z B. J Am Chem Soc , 2015 . 137 4846 - 4850 . DOI:10.1021/jacs.5b01601http://doi.org/10.1021/jacs.5b01601 .
Zhou X X, Guo B C, Zhang L Q, Hu G H. Chem Soc Rev , 2017 . 46 6301 DOI:10.1039/C7CS00276Ahttp://doi.org/10.1039/C7CS00276A .
Huang J, Zhang L J, Tang Z H, Guo B C. Compo Com , 2018 . 8 65 - 73 . DOI:10.1016/j.coco.2017.11.002http://doi.org/10.1016/j.coco.2017.11.002 .
Wang S, Tang Z H, Huang J, Guo B C. Chinese J Polym Sci , 2018 . 36(9) 1055 - 1062.
Tang Z H, Huang J, Guo B C. Macromolecules , 2016 . 49 1781 - 1789 . DOI:10.1021/acs.macromol.5b02756http://doi.org/10.1021/acs.macromol.5b02756 .
Harrington M J, Masic A, Holten-Andersen N. Science , 2010 . 328 216 - 220 . DOI:10.1126/science.1181044http://doi.org/10.1126/science.1181044 .
Holten-Andersen N, Fantner G E, Hohlbauch S. Nat Mater , 2007 . 6 669 - 672 . DOI:10.1038/nmat1956http://doi.org/10.1038/nmat1956 .
Song P, Xu Z, Dargusch M, Chen Z, Wang H. Adv Mater , 2017 . 29 1704661 DOI:10.1002/adma.201704661http://doi.org/10.1002/adma.201704661 .
Zhang X H, Liu J, Zhang Z Y, Wu S W, Tang Z H, Guo B C, Zhang L Q. ACS Appl Mater Interfaces , 2018 . 10 23485 - 23489 . DOI:10.1021/acsami.8b08844http://doi.org/10.1021/acsami.8b08844 .
Shen Fei(沈飞), Wu Chifei(吴驰飞). Acta Polymerica Sinica(高分子学报) , 2007 . ( 4 ): 361 - 365 . DOI:10.3321/j.issn:1000-3304.2007.04.011http://doi.org/10.3321/j.issn:1000-3304.2007.04.011 .
Yuan X F, Shen F, Wu G Z, Wu C F. J Polym Sci, Part B: Polym Phys , 2007 . 45 571 - 576 . DOI:10.1002/polb.21087http://doi.org/10.1002/polb.21087 .
Yuan X, Shen F, Wu G, Wu C F. Mater Sci Eng A , 2007 . 459 82 - 85 . DOI:10.1016/j.msea.2007.01.036http://doi.org/10.1016/j.msea.2007.01.036 .
Mou H, Xue P, Shi Q, Guo W, Wu C, Fu X. Polym J , 2012 . 44 1064 - 1069 . DOI:10.1038/pj.2012.59http://doi.org/10.1038/pj.2012.59 .
Shao C, Mao Y, Shang P, Li Q, Wu C. Polym Bull , 2019 . 76 1435 - 1452 . DOI:10.1007/s00289-018-2447-2http://doi.org/10.1007/s00289-018-2447-2 .
Pokrovskii V N. Polym Mech , 1968 . 4 255 - 262.
Bekichev V I. Polym Sci USSR , 1974 . 16 2020 - 2023 . DOI:10.1016/0032-3950(74)90269-Xhttp://doi.org/10.1016/0032-3950(74)90269-X .
0
浏览量
35
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构