浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
E-mail: rensj@scu.edu.cn Shijie Ren, E-mail: rensj@scu.edu.cn
纸质出版日期:2020-2,
网络出版日期:2019-11-6,
收稿日期:2019-8-4,
修回日期:2019-9-5,
扫 描 看 全 文
陈云妮, 肖琴, 李青音, 任世杰. 静电纺丝交联凝胶聚合物电解质的制备与表征[J]. 高分子学报, 2020,51(2):183-190.
Yun-ni Chen, Qin Xiao, Qing-yin Li, Shi-jie Ren. Preparation and Characterization of Electrospinning Crosslinked Gel Polymer Electrolytes[J]. Acta Polymerica Sinica, 2020,51(2):183-190.
陈云妮, 肖琴, 李青音, 任世杰. 静电纺丝交联凝胶聚合物电解质的制备与表征[J]. 高分子学报, 2020,51(2):183-190. DOI: 10.11777/j.issn1000-3304.2019.19149.
Yun-ni Chen, Qin Xiao, Qing-yin Li, Shi-jie Ren. Preparation and Characterization of Electrospinning Crosslinked Gel Polymer Electrolytes[J]. Acta Polymerica Sinica, 2020,51(2):183-190. DOI: 10.11777/j.issn1000-3304.2019.19149.
利用静电纺丝技术和傅-克烷基化反应制备了以聚偏氟乙烯(PVDF)为基体,聚苯乙烯-聚环氧乙烷-聚苯乙烯(PS-PEO-PS)三嵌段共聚物为添加剂的交联纳米纤维复合膜(e-CPMs). 将e-CPMs浸泡电解液活化,即可得到交联凝胶聚合物电解质(e-CGPEs). 通过改变PS-PEO-PS的含量(3%、5%、10%、20%)研究了PS-PEO-PS对e-CPMs热稳定性及e-CGPE电化学性能的影响. 结果表明,e-CPMs的高温尺寸稳定性优于PVDF膜和商业化聚丙烯(PP)隔膜. 当PS-PEO-PS的添加量达到5%时,e-CGPE 5%的室温离子电导率可达6.52 mS/cm. 在2 C充放电,e-CGPE 5%放电比容量仍可达83.5 mAh/g. 在0.1 C循环100次后,e-CGPE 5%的放电容量保持率高达99.7%.
Gel polymer electrolytes (GPEs) for lithium ion batteries (LIBs) have attracted great attention due to their high ionic conductivity and safety
but it is still a great challenge to develop GPEs which can be used at high temperature in specific applications
such as oil drilling
mining
military and aerospace electronics. Cross-linking is one of the efficient methods for enhancing the thermal stabilities of GPEs. In this work
crosslinked gel polymer electrolytes (e-CGPEs) were made by electrospinning and Friedel-Crafts alkylation reaction. First of all
electrospun polymer membranes (e-PMs) were prepared by electrospinning technique with poly(vinylidene fluoride) (PVDF) as the matrix and polystyrene-
b
-poly(ethylene oxide)-
b
-polystyrene (PS-PEO-PS) triblock copolymer as the additive. Then the styrene units in e-PMs were crosslinked by Friedel-Crafts alkylation reaction to give electrospun crosslinked polymer membranes (e-CPMs). e-CPMs were activated by absorbing electrolytes to give crosslinked gel polymer electrolytes (e-CGPEs). The effects of PS-PEO-PS content (3%
5%
10%
20%) on the properties of e-CPMs and e-CGPEs were also discussed. The results show that the content of PS-PEO-PS can affect the crystallinity
electrolyte uptake and crosslinked degree of e-CPMs
which may have influences on the ionic conductivity. Owing to the abundant crosslinked networks
high-temperature dimensional stabilities of e-CPMs are much better than that of electrospun PVDF membrane and commercial polypropylene (PP) membrane. All e-CPMs show almost no dimensional shrinkage at 160 °C
indicating that e-CPMs can be efficient precursors of GPEs used at high temperature. e-CGPEs have better electrochemical performances than the PVDF-based GPE (e-PVDF)
due to their high porosity
electrolyte uptake and ionic conductivity. Among all the e-CGPEs
e-CGPE 5% with proper PS-PEO-PS content and crosslinked degree possesses the highest ionic conductivity of 6.52 mS/cm at room temperature. The half-cell assembled by e-CGPE 5% shows a discharge specific capacity of 83.5 mAh/g at 2 C. e-CGPEs also exhibit excellent cycle and rate performances. e-CGPE 5% has a capacity retention of 99.7% after 100 cycles at 0.1 C. All the results suggest that e-CGPEs have potential application value in high-efficiency lithium ion batteries which could be used at high temperature. And this work also provides a new path for the preparation of crosslinked gel polymer electrolytes with high efficiency and good performance.
静电纺丝傅-克烷基化反应锂离子电池凝胶聚合物电解质交联网络
ElectrospinningFriedel-Crafts alkylation reactionLithium ion batteryGel polymer electrolyteCrosslinked networks
Tarascon J M, Armand M. Nature , 2001 . 414 359 - 367 . DOI:10.1038/35104644http://doi.org/10.1038/35104644 .
Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Energy Storage Mater , 2018 . 10 246 - 267 . DOI:10.1016/j.ensm.2017.05.013http://doi.org/10.1016/j.ensm.2017.05.013 .
Long L, Wang S, Xiao M, Meng Y. J. Mater Chem A , 2016 . 4 10038 - 10069 . DOI:10.1039/C6TA02621Dhttp://doi.org/10.1039/C6TA02621D .
Di Noto V, Lavina S, Giffin G A, Negro E. Scrosati B. Electrochim Acta , 2011 . 57 4 - 13 . DOI:10.1016/j.electacta.2011.08.048http://doi.org/10.1016/j.electacta.2011.08.048 .
Agrawal R C, Pandey G P. J Phys D: Appl Phys , 2008 . 41 223001 DOI:10.1088/0022-3727/41/22/223001http://doi.org/10.1088/0022-3727/41/22/223001 .
Liang S, Yan W, Wu X, Zhang Y, Zhu Y, Wang H, Wu Y. Solid State Ion , 2018 . 318 2 - 18 . DOI:10.1016/j.ssi.2017.12.023http://doi.org/10.1016/j.ssi.2017.12.023 .
Cheng X L, Pan J, Zhao Y, Liao M, Peng H S. Adv Energy Mater , 2018 . 8 1702184 DOI:10.1002/aenm.201702184http://doi.org/10.1002/aenm.201702184 .
Ma X, Zuo X, Wu J, Deng X, Xiao X, Liu J, Nan J. J Mater Chem A , 2018 . 6 1496 - 1503 . DOI:10.1039/C7TA08741Ahttp://doi.org/10.1039/C7TA08741A .
Devaux D, Glé D, Phan T N T, Gigmes D, Giroud E, Deschamps M, Denoyel R, Bouchet R. Chem Mater , 2015 . 27 4682 - 4692 . DOI:10.1021/acs.chemmater.5b01273http://doi.org/10.1021/acs.chemmater.5b01273 .
Lu Q, He Y B, Yu Q, Li B, Kaneti Y V, Yao Y, Kang F, Yang Q H. Adv Mater , 2017 . 29 1604460 DOI:10.1002/adma.201604460http://doi.org/10.1002/adma.201604460 .
Shin W K, Yoo J H, Choi W, Chung K Y, Jang S S, Kim D W. J Mater Chem A , 2015 . 3 12101 - 12560 . DOI:10.1039/C5TA90123Ehttp://doi.org/10.1039/C5TA90123E .
Wang Y M, Qiu J Y, Peng J, Li J Q, Zhai M L. J Mater Chem A , 2017 . 5 12393 - 12399 . DOI:10.1039/C7TA02291Chttp://doi.org/10.1039/C7TA02291C .
Tan L, Tan B. Chem Soc Rev , 2017 . 46 3322 - 3356 . DOI:10.1039/C6CS00851Hhttp://doi.org/10.1039/C6CS00851H .
Luo Y, Li B, Wang W, Wu K, Tan B. Adv Mater , 2012 . 24 5703 DOI:10.1002/adma.201202447http://doi.org/10.1002/adma.201202447 .
Xiao Q, Deng C, Wang Q, Zhang Q, Yue Y, Ren S. ACS Omega , 2019 . 4 95 - 103 . DOI:10.1021/acsomega.8b02255http://doi.org/10.1021/acsomega.8b02255 .
Beaudoin E, Phan T N, Robinet M, Denoyel R, Davidson P, Bertin D, Bouchet R. Langmuir , 2013 . 29 10874 - 10880 . DOI:10.1021/la401889hhttp://doi.org/10.1021/la401889h .
Choi S W, Jo S M, Lee W S, Kim Y R. Adv Mater , 2003 . 15 2027 - 2032 . DOI:10.1002/adma.200304617http://doi.org/10.1002/adma.200304617 .
Hu L, Tang Z, Zhang Z. J Power Sources , 2007 . 166 226 - 232 . DOI:10.1016/j.jpowsour.2007.01.028http://doi.org/10.1016/j.jpowsour.2007.01.028 .
0
浏览量
28
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构