浏览全部资源
扫码关注微信
华南理工大学分子科学与工程学院 华南软物质科学与技术高等研究院 广州 510640
[ "张荣纯,男,1987年生. 2009年和2014年在南开大学分别获得凝聚态物理学士和博士学位,随后在美国密歇根大学安娜堡分校生物物理和化学系及南开大学药物化学生物学国家重点实验室从事博士后研究,2018年加入华南理工大学华南软物质科学与技术高等研究院,任特聘副研究员. 主要研究方向包括:(1)发展高分辨高灵敏固体核磁共振新方法用于研究复杂体系的微观结构和动力学,包括聚合物、无机材料、药物、有机-无机杂化纳米复合材料、生物大分子等;(2)高分子材料的交联/缠结网络结构和黏弹性;(3)高性能多相聚合物材料的设计、合成及表征" ]
纸质出版日期:2020-2,
网络出版日期:2019-11-25,
收稿日期:2019-9-29,
修回日期:2019-10-28,
扫 描 看 全 文
张荣纯. 多相聚合物微观结构和分子间相互作用的固体NMR研究[J]. 高分子学报, 2020,51(2):136-147.
Rong-chun Zhang. The Microstructures and Molecular Interactions in Multiphase Polymers: Insights from Solid-State NMR Spectroscopy[J]. Acta Polymerica Sinica, 2020,51(2):136-147.
张荣纯. 多相聚合物微观结构和分子间相互作用的固体NMR研究[J]. 高分子学报, 2020,51(2):136-147. DOI: 10.11777/j.issn1000-3304.2019.19175.
Rong-chun Zhang. The Microstructures and Molecular Interactions in Multiphase Polymers: Insights from Solid-State NMR Spectroscopy[J]. Acta Polymerica Sinica, 2020,51(2):136-147. DOI: 10.11777/j.issn1000-3304.2019.19175.
近年来固体核磁共振(NMR)技术在聚合物材料表征领域正发挥着越来越重要的作用,已经成为研究聚合物微观结构、链段动力学、分子间相互作用等微观信息及阐明材料结构-功能-性质关系必不可少的重要手段. 本文将综述我们近年来系统构建和发展的固体NMR方法及其在研究多相聚合物微观结构、分子间相互作用和交联网络等问题中的应用. 此外,针对存在不均匀性动力学的多相聚合物体系,我们发展了增强固体NMR谱图灵敏度的新方法.
In recent decades
solid-state nuclear magnetic resonance (NMR) spectroscopy has been playing an important role in the characterization of polymer materials. To some degree
it has become one of the indispensable tools for studying the microstructures
segmental dynamics and inter-/intra-molecular interactions and elucidating the structure-functionality-property relationship of multiphase polymer materials
because the anisotropic spin interactions in the molecules can be selectively manipulated
via
various radiofrequency pulse sequence design. As a result
NMR can provide important information on a length scale from 0.1 nm to 100 nm and a time scale from 1 ns to 100 s. Herein
in this current review article
we will review some of our recently developed solid-state NMR approaches specifically for applications in polymers
including quantitative determination of compositional contents
characterization of crosslinking/entanglement density and inhomogeneity of the network
hydrogen bonding interactions between segments
and so on. A variety of typical examples
including self-healing supramolecular rubbers
thermal reversible polyurethanes
dual-cross-linked hydrogels
elastomers
etc
.
are given in detail
showing how various solid-state NMR approaches were implemented to quantitatively characterizing the structures
molecular interactions
and crosslinking network. Furthermore
due to the presence of heterogeneous dynamic in multiphase polymers
the applications of traditional solid-state NMR techniques are sustainably limited
and we also developed corresponding novel solid-state NMR approaches to overcome the limitations and enhance the spectral resolution and signal sensitivity.
多相聚合物固体核磁结构和动力学交联网络链段相互作用
Multiphase polymerSolid-state NMRStructures and dynamicsCrosslinking networkSegmental interactions
Rubinstein M, Colby R H. Polymer Physics. New York: Oxford University Press, 2003
Ma Dezhu(马德柱). Structures and Performance of Polymers(高聚物的结构与性能). Beijing(北京): Science Press(科学出版社), 2012
Hansen M R, Graf R, Spiess H W. Chem Rev , 2016 . 116 ( 3 ): 1272 - 1308 . DOI:10.1021/acs.chemrev.5b00258http://doi.org/10.1021/acs.chemrev.5b00258 .
Zhang R, Miyoshi T, Sun P. ed.. NMR Methods for Characterization of Synthetic and Natural Polymers. London: Royal Society of Chemistry , 2019 .
Spiess H W. Macromolecules , 2017 . 50 ( 5 ): 1761 - 1777 . DOI:10.1021/acs.macromol.6b02736http://doi.org/10.1021/acs.macromol.6b02736 .
Zhang Rongchun(张荣纯), Sun Pingchuan(孙平川). Chinese Journal of Magnetic Resonance(波谱学杂志) , 2012 . 29 ( 3 ): 307 - 338 . DOI:10.3969/j.issn.1000-4556.2012.03.001http://doi.org/10.3969/j.issn.1000-4556.2012.03.001 .
Schmidt-Rohr K, Spiess H W. Multidimensional Solid-state NMR and Polymers. London: Academic Press, 1994
Xue Gi(薛奇). Spectroscopy for Studying Structures of Organic Compounds and Polymers(有机及高分子化合物结构研究中的光谱方法). Beijing(北京): Science Press(科学出版社), 2016
Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. New York: Oxford University Press, 1987
Mehring M. Principles of High Resolution NMR in Solids. Springer Science & Business Media, 2012
Paul D R, Bucknall C B. Polymer Blends: Formulation & Performance. Beijing(北京): Science Press(科学出版社), 2004.
Mark J, Ngai K, Graessley W, Mandelkern L, Samulski E, Wignall G, Koenig J. Physical Properties of Polymers. Cambridge: Cambridge University Press, 2004
Pavlidou S, Papaspyrides C D. Prog Polym Sci , 2008 . 33 ( 12 ): 1119 - 1198 . DOI:10.1016/j.progpolymsci.2008.07.008http://doi.org/10.1016/j.progpolymsci.2008.07.008 .
Yang Y, Ding X, Urban M W. Prog Polym Sci , 2015 . 49-50 34 - 59 . DOI:10.1016/j.progpolymsci.2015.06.001http://doi.org/10.1016/j.progpolymsci.2015.06.001 .
Hager M D, Bode S, Weber C, Schubert U S. Prog Polym Sci , 2015 . 49-50 3 - 33 . DOI:10.1016/j.progpolymsci.2015.04.002http://doi.org/10.1016/j.progpolymsci.2015.04.002 .
Yilgör I, Yilgör E, Wilkes G L. Polymer , 2015 . 58 A1 - A36 . DOI:10.1016/j.polymer.2014.12.014http://doi.org/10.1016/j.polymer.2014.12.014 .
Deanin R D. High Performance Biomaterials: A Complete Guide to Medical and Pharmaceutical Applications, 1st ed. New York: Routledge Press, 2017
Hernandez R, Weksler J, Padsalgikar A, Choi T, Angelo E, Lin J, Xu L-C, Siedlecki C A, Runt J. Macromolecules , 2008 . 41 ( 24 ): 9767 - 9776 . DOI:10.1021/ma8014454http://doi.org/10.1021/ma8014454 .
Bates F S, Fredrickson G. Phys Today , 2000 . 52 32 - 38.
Yang C, Yin T, Suo Z. J Mech Phys Solids , 2019 . 131 43 - 55 . DOI:10.1016/j.jmps.2019.06.018http://doi.org/10.1016/j.jmps.2019.06.018 .
Zhong M, Wang R, Kawamoto K, Olsen B D, Johnson J A. Science , 2016 . 353 ( 6305 ): 1264 - 1268 . DOI:10.1126/science.aag0184http://doi.org/10.1126/science.aag0184 .
Saalwaechter K, Seiffert S. Soft Matter , 2018 . 14 1976 - 1991 . DOI:10.1039/C7SM02444Dhttp://doi.org/10.1039/C7SM02444D .
Saalwachter K, Chasse W, Sommer J U. Soft Matter , 2013 . 9 6587 - 6593 . DOI:10.1039/c3sm50194ahttp://doi.org/10.1039/c3sm50194a .
Shen Jiacong(沈家骢), Zhang Wenke(张文科), Sun Junqi(孙俊奇). Introduction to Supramolecular Materials(超分子材料引论). Beijing(北京): Science Press(科学出版社), 2019
Xu Jiangfei(徐江飞), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报) , 2017 . ( 1 ): 37 - 49 . DOI:10.11777/j.issn1000-3304.2017.16262http://doi.org/10.11777/j.issn1000-3304.2017.16262 .
Kuo S W, Chang F C. Macromolecules , 2001 . 34 ( 15 ): 5224 - 5228 . DOI:10.1021/ma010517ahttp://doi.org/10.1021/ma010517a .
He Y, Zhu B, Inoue Y. Prog Polym Sci , 2004 . 29 ( 10 ): 1021 - 1051 . DOI:10.1016/j.progpolymsci.2004.07.002http://doi.org/10.1016/j.progpolymsci.2004.07.002 .
Tseng T C, Kuo S W. Macromolecules , 2018 . 51 ( 16 ): 6451 - 6459 . DOI:10.1021/acs.macromol.8b00751http://doi.org/10.1021/acs.macromol.8b00751 .
Rhim W K, Pines A, Waugh J S. Phys Rev B , 1971 . 3 ( 3 ): 684 - 696 . DOI:10.1103/PhysRevB.3.684http://doi.org/10.1103/PhysRevB.3.684 .
Mauri M, Thomann Y, Schneider H, Saalwächter K. Solid State Nucl Magn Reson , 2008 . 34 ( 1-2 ): 125 - 141 . DOI:10.1016/j.ssnmr.2008.07.001http://doi.org/10.1016/j.ssnmr.2008.07.001 .
Maus A, Hertlein C, Saalwächter K. Macro Chem Phys , 2006 . 207 ( 13 ): 1150 - 1158 . DOI:10.1002/macp.200600169http://doi.org/10.1002/macp.200600169 .
Zhang R, Yu S, Chen S, Wu Q, Chen T, Sun P, Li B, Ding D. J Phys Chem B , 2014 . 118 ( 4 ): 1126 - 1137 . DOI:10.1021/jp409893fhttp://doi.org/10.1021/jp409893f .
Wang F, Zhang R, Lin A, Chen R, Wu Q, Chen T, Sun P. Polymer , 2016 . 107 61 - 70 . DOI:10.1016/j.polymer.2016.11.009http://doi.org/10.1016/j.polymer.2016.11.009 .
Zhao Shouyuan(赵守远), Wang Yuanyuan(王媛媛), Zhang Rongchun(张荣纯), Chen Tiehong(陈铁红),Sun Pingchuan(孙平川). Chinese Journal of Magnetic Resonance(波谱学杂志) , 2014 . 31 ( 2 ): 172 - 184 . DOI:10.3969/j.issn.1000-4556.2014.02.004http://doi.org/10.3969/j.issn.1000-4556.2014.02.004 .
Anderson P W, Weiss P. Rev Mod Phys , 1953 . 25 ( 1 ): 269 - 276 . DOI:10.1103/RevModPhys.25.269http://doi.org/10.1103/RevModPhys.25.269 .
Papon A, Saalwächter K, Schäler K, Guy L, Lequeux F, Montes H. Macromolecules , 2011 . 44 ( 4 ): 913 - 922 . DOI:10.1021/ma102486xhttp://doi.org/10.1021/ma102486x .
Zhang R, Yan T, Lechner B-D, Schröter K, Liang Y, Li B, Furtado F, Sun P, Saalwächter K. Macromolecules , 2013 . 46 ( 5 ): 1841 - 1850 . DOI:10.1021/ma400019mhttp://doi.org/10.1021/ma400019m .
Sturniolo S, Saalwächter K. Chem Phys Lett , 2011 . 516 ( 1-3 ): 106 - 110 . DOI:10.1016/j.cplett.2011.09.059http://doi.org/10.1016/j.cplett.2011.09.059 .
Saalwachter K. Prog Nucl Magn Reson Spectrosc , 2007 . 51 ( 1 ): 1 - 35 . DOI:10.1016/j.pnmrs.2007.01.001http://doi.org/10.1016/j.pnmrs.2007.01.001 .
Saalwächter K. Multiple-Quantum NMR studies of anisotropic polymer chain dynamics. In: Webb G A, ed. Modern Magnetic Resonance. Cham: Springer International Publishing, 2018. Chapter 38
Chassé W, Saalwächter K, Sommer J U. Macromolecules , 2012 . 45 ( 13 ): 5513 - 5523 . DOI:10.1021/ma3009004http://doi.org/10.1021/ma3009004 .
Zou X, Kui X, Zhang R, Zhang Y, Wang X, Wu Q, Chen T, Sun P. Macromolecules , 2017 . 50 ( 23 ): 9340 - 9352 . DOI:10.1021/acs.macromol.7b01854http://doi.org/10.1021/acs.macromol.7b01854 .
Saalwächter K, Heuer A. Macromolecules , 2006 . 39 ( 9 ): 3291 - 3303 . DOI:10.1021/ma052567bhttp://doi.org/10.1021/ma052567b .
Saalwächter K, Herrero B, López-Manchado M A. Macromolecules , 2005 . 38 ( 23 ): 9650 - 9660 . DOI:10.1021/ma051238ghttp://doi.org/10.1021/ma051238g .
Chasse W, Valentin J L, Genesky G D, Cohen C, Saalwächter K. J Chem Phys , 2011 . 134 ( 4 ): 044907 .
Voda M, Demco D, Perlo J, Orza R, Blümich B. J Magn Reson , 2005 . 172 ( 1 ): 98 - 109 . DOI:10.1016/j.jmr.2004.10.001http://doi.org/10.1016/j.jmr.2004.10.001 .
Fechete R, Demco D, Blümich B. Macromolecules , 2002 . 35 ( 16 ): 6083 - 6085 . DOI:10.1021/ma020532vhttp://doi.org/10.1021/ma020532v .
Baum J, Pines A. J Am Chem Soc , 1986 . 108 ( 24 ): 7447 - 7454 . DOI:10.1021/ja00284a001http://doi.org/10.1021/ja00284a001 .
Wang M, Bertmer M, Demco D, Blümich B, Litvinov V, Barthel H. Macromolecules , 2003 . 36 ( 12 ): 4411 - 4413 . DOI:10.1021/ma0217534http://doi.org/10.1021/ma0217534 .
Gao Y, Zhang R, Lv W, Liu Q, Wang X, Sun P, Winter H H, Xue G. J Phys Chem C , 2014 . 118 ( 10 ): 5606 - 5614 . DOI:10.1021/jp5013472http://doi.org/10.1021/jp5013472 .
Saalwächter K, Kleinschmidt F, Sommer J U. Macromolecules , 2004 . 37 ( 23 ): 8556 - 8568 . DOI:10.1021/ma048803khttp://doi.org/10.1021/ma048803k .
Wang F, Chen S, Wu Q, Zhang R, Sun P. Polymer , 2019 . 163 154 - 161 . DOI:10.1016/j.polymer.2018.12.062http://doi.org/10.1016/j.polymer.2018.12.062 .
Demco D E, Johansson A, Tegenfeldt J. Solid State Nucl Magn Reson , 1995 . 4 ( 1 ): 13 - 38 . DOI:10.1016/0926-2040(94)00036-Chttp://doi.org/10.1016/0926-2040(94)00036-C .
Huang C, Huang G, Li S, Luo M, Liu H, Fu X, Qu W, Xie Z, Wu J. Polymer , 2018 . 154 90 - 100 . DOI:10.1016/j.polymer.2018.08.057http://doi.org/10.1016/j.polymer.2018.08.057 .
Liu H, Huang G S, Wei L Y, Zeng J, Fu X, Huang C, Wu J R. Chinese J Polym Sci , 2019 . 37 ( 11 ): 1142 - 1151 . DOI:10.1007/s10118-019-2267-3http://doi.org/10.1007/s10118-019-2267-3 .
Kim S Y, Meyer H W, Saalwächter K, Zukoski C F. Macromolecules , 2012 . 45 ( 10 ): 4225 - 4237 . DOI:10.1021/ma300439khttp://doi.org/10.1021/ma300439k .
Ott M, Pérez-Aparicio R, Schneider H, Sotta P, Saalwächter K. Macromolecules , 2014 . 47 ( 21 ): 7597 - 7611 . DOI:10.1021/ma5012655http://doi.org/10.1021/ma5012655 .
Coleman M M, Painter P C, Graf J F. Specific Interactions and the Miscibility of Polymer Blends. New York: CRC Press, 2017
Tian D, Li T, Zhang R, Wu Q, Chen T, Sun P, Ramamoorthy A. J Phys Chem B , 2017 . 121 ( 25 ): 6108 - 6116 . DOI:10.1021/acs.jpcb.7b02838http://doi.org/10.1021/acs.jpcb.7b02838 .
Radloff D, Boeffel C, Spiess H W. Macromolecules , 1996 . 29 ( 5 ): 1528 - 1534 . DOI:10.1021/ma950405hhttp://doi.org/10.1021/ma950405h .
Zhang C, Yang Z, Duong N T, Li X, Nishiyama Y, Wu Q, Zhang R, Sun P. Macromolecules , 2019 . 52 ( 13 ): 5014 - 5025 . DOI:10.1021/acs.macromol.9b00503http://doi.org/10.1021/acs.macromol.9b00503 .
Li M, Zhang R, Li X, Wu Q, Chen T, Sun P. Polymer , 2018 . 148 127 - 137 . DOI:10.1016/j.polymer.2018.06.024http://doi.org/10.1016/j.polymer.2018.06.024 .
Yang Z, Wang F, Zhang C, Li J, Zhang R, Wu Q, Chen T, Sun P. Polym Chem , 2019 . 10 ( 24 ): 3362 - 3370 . DOI:10.1039/C9PY00383Ehttp://doi.org/10.1039/C9PY00383E .
Wojtecki R J, Meador M A, Rowan S J. Nat Mater , 2011 . 10 ( 1 ): 14 - 27 . DOI:10.1038/nmat2891http://doi.org/10.1038/nmat2891 .
Fantner G E, Hassenkam T, Kindt J H, Weaver J C, Birkedal H, Pechenik L, Cutroni J A, Cidade G A G, Stucky G D, Morse D E, Hansma P K. Nat Mater , 2005 . 4 ( 8 ): 612 - 616 . DOI:10.1038/nmat1428http://doi.org/10.1038/nmat1428 .
Sun T L, Kurokawa T, Kuroda S, Ihsan A B, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat Mater , 2013 . 12 ( 10 ): 932 - 937 . DOI:10.1038/nmat3713http://doi.org/10.1038/nmat3713 .
Sijbesma R P, Beijer F H, Brunsveld L, Folmer B J B, Hirschberg J H K K, Lange R F M, Lowe J K L, Meijer E W. Science , 1997 . 278 ( 5343 ): 1601 - 1604 . DOI:10.1126/science.278.5343.1601http://doi.org/10.1126/science.278.5343.1601 .
Robertson A J, Pandey M K, Marsh A, Nishiyama Y, Brown S P. J Magn Reson , 2015 . 260 89 - 97 . DOI:10.1016/j.jmr.2015.09.005http://doi.org/10.1016/j.jmr.2015.09.005 .
Zhang R, Mroue K H, Ramamoorthy A. Acc Chem Res , 2017 . 50 ( 4 ): 1105 - 1113 . DOI:10.1021/acs.accounts.7b00082http://doi.org/10.1021/acs.accounts.7b00082 .
Schaefer J, Stejskal E. J Am Chem Soc , 1976 . 98 ( 4 ): 1031 - 1032 . DOI:10.1021/ja00420a036http://doi.org/10.1021/ja00420a036 .
Pines A, Gibby M G, Waugh J. J Chem Phys , 1973 . 59 ( 2 ): 569 - 590 . DOI:10.1063/1.1680061http://doi.org/10.1063/1.1680061 .
Zhang R, Mroue K H, Ramamoorthy A. J Magn Reson , 2016 . 266 59 - 66 . DOI:10.1016/j.jmr.2016.03.006http://doi.org/10.1016/j.jmr.2016.03.006 .
Zhang R, Nishiyama Y, Ramamoorthy A. J Magn Reson , 2019 . 309 106615 DOI:10.1016/j.jmr.2019.106615http://doi.org/10.1016/j.jmr.2019.106615 .
Zhang R, Duong N T, Nishiyama Y, Ramamoorthy A. J Phys Chem B , 2017 . 121 ( 24 ): 5944 - 5952 . DOI:10.1021/acs.jpcb.7b03480http://doi.org/10.1021/acs.jpcb.7b03480 .
Zhang R, Mroue K H, Sun P, Ramamoorthy A. High-resolution proton NMR spectroscopy of polymers and biological solids. In: Webb G A. ed. Modern Magnetic Resonance. Cham: Springer International Publishing, 2018. Chapter 25
Zhang R, Chen Y, Rodriguez-Hornedo N, Ramamoorthy A. ChemPhysChem , 2016 . 17 ( 19 ): 2962 - 2966 . DOI:10.1002/cphc.201600637http://doi.org/10.1002/cphc.201600637 .
Maly T, Debelouchina G T, Bajaj V S, Hu K N, Joo C G, Mak-Jurkauskas M L, Sirigiri J R, Patrick C A V, Herzfeld J, Temkin R J, Griffin R G. J Chem Phys , 2008 . 128 ( 5 ): 052211 DOI:10.1063/1.2833582http://doi.org/10.1063/1.2833582 .
0
浏览量
56
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构