浏览全部资源
扫码关注微信
1.中国科学院化学研究所 中国科学院工程塑料重点实验室 北京 100190
2.中国科学院大学 北京 100049
3.中国石油天然气股份有限公司石油化工研究院 北京 102206
4.中国石油天然气股份有限公司抚顺石化分公司研究院 抚顺 113000
E-mail: jydong@iccas.ac.cn
纸质出版日期:2020-4,
网络出版日期:2020-1-2,
收稿日期:2019-10-29,
修回日期:2019-11-27,
扫 描 看 全 文
尹学敏, 秦亚伟, 张丽洋, 马帅, 董金勇. 氢气对氯硅烷功能化非共轭
Xue-min Yin, Ya-wei Qin, Li-yang Zhang, Shuai Ma, Jin-yong Dong. Effect of Hydrogen on Copolymerization between Dichlorosilane-functionalized Nonconjugated
尹学敏, 秦亚伟, 张丽洋, 马帅, 董金勇. 氢气对氯硅烷功能化非共轭
Xue-min Yin, Ya-wei Qin, Li-yang Zhang, Shuai Ma, Jin-yong Dong. Effect of Hydrogen on Copolymerization between Dichlorosilane-functionalized Nonconjugated
基于Ziegler-Natta催化剂的氯硅烷功能化非共轭
α
ω
-双烯烃与丙烯共聚,在水的引发下脱水缩合可有效地形成长支链结构的聚丙烯树脂. 而氢气常作为丙烯聚合中的链转移剂,调控聚丙烯的分子量,基于此,研究了氢气对氯硅烷功能化非共轭
α
ω
-双烯烃与丙烯共聚物链结构的影响. 核磁共振氢谱(
1
H-NMR)测试结果表明,氢气抑制了氯硅烷功能化非共轭
α
ω
-双烯烃的插入,随着氢气用量的增加,共聚物分子链中端基乙烯基含量由0.12 mol%降低到0.05 mol%. 熔体流变行为测试结果显示,聚合物熔体的储能模量、损耗模量和零剪切黏度均随着氢气用量增加而降低,这主要是由于相对分子质量减小和长支链密度的减少.
Dichlorosilane functionalized nonconjugated
α
ω
-diolefin and propylene copolymers
prepared by heterogeneous Ziegler-Natta catalysts
have been newly found to trigger dehydration condensation reaction among/between polypropylene chains to form long-chain branched (LCB) structures in the presence of water. Hydrogen is often used as a chain transfer agent to regulate the molecular weight of the polymer in olefin polymerization. Therefore
whether or how hydrogen affects the insertion of the di(5-hexenyl)dichlorosilane in the polymerization of propylene is a topic worthy of study. Herein
the copolymerization of di(5-hexenyl)dichlorosilane and propylene has been investigated based on MgCl
2
/TiCl
4
catalyst (9
9-bis(methoxymethyl)fluorine (BMMF)
as internal electron donor) in bulk polymerization conditions. The polypropylene microstructure was analysed by changing hydrogen content while the amount of di(5-hexenyl)dichlorosilane was fixed. It was found that hydrogen significantly improved the activity of catalyst and reduced the molecular weight of polymer. The
1
H-NMR results show that the pendant double bonds in the polypropylene chain decreased from 0.12 mol% to 0.05 mol%
illustrating that hydrogen inhibited the insertion of di(5-hexenyl)dichlorosilane in the polymerization. The higher the hydrogen content
the lower the insertion of di(5-hexenyl)dichlorosilane in the polypropylene chain
which corresponds to the decreasing density of long-branched chains in the polymer. Analysis of the insoluble portion of the polymer in the xylene showed that there is no gel in the presence of hydrogen. The creep test results exhibit that the value of
M
b
/
M
w
increases from 0.70 to 0.95
which quantitatively indicates that the long-chain branching density in the polymer decreases with the increasing hydrogen content. The long-branched chain density in polymer decreases with the increasing hydrogen content
which is also confirmed by the results of small amplitude oscillatory shear rheology test.
Ziegler-Natta催化剂氢气氯硅烷功能化αω-双烯烃长链支化结构链转移反应
Ziegler-Natta catalystHydrogenDi(5-hexenyl)dichlorosilaneLong-branched chain structureChain transfer
Klaue A, Kruck M, Friederichs N, Bertola F, Wu H, Morbidelli M. Ind Eng Chem Res , 2019 . 58 ( 2 ): 886 - 896 . DOI:10.1021/acs.iecr.8b05296http://doi.org/10.1021/acs.iecr.8b05296 .
Liu P W, Liu W F, Wang W J, Li B G, Zhu S P. Macromol React Eng , 2016 . 10 ( 3 ): 156 - 179 . DOI:10.1002/mren.201500053http://doi.org/10.1002/mren.201500053 .
Zulli F, Andreozzi L, Passaglia E, Augier S, Giordano M. J Appl Polym Sci , 2013 . 127 ( 2 ): 1423 - 1432 . DOI:10.1002/app.38076http://doi.org/10.1002/app.38076 .
Yang T T, Qin Y W, Dong J Y. Macromolecules , 2018 . 51 ( 22 ): 9234 - 9249 . DOI:10.1021/acs.macromol.8b01958http://doi.org/10.1021/acs.macromol.8b01958 .
Walter P, Trinkle S, Lilge D, Friedrich C, Mülhaupt R. Macromol Mater Eng , 2001 . 286 ( 5 ): 309 - 315 . DOI:10.1002/1439-2054(20010501)286:5<309::AID-MAME309>3.0.CO;2-Fhttp://doi.org/10.1002/1439-2054(20010501)286:5<309::AID-MAME309>3.0.CO;2-F .
Wang B, Zhang Y M, Ma Z, Pan L, Yu S J, Li Y S. Polym Chem , 2016 . 7 ( 17 ): 2938 - 2946 . DOI:10.1039/C6PY00333Hhttp://doi.org/10.1039/C6PY00333H .
Wang B, Long Y Y, Li Y G, Men Y F, Li Y S. Polymer , 2015 . 61 108 - 114 . DOI:10.1016/j.polymer.2015.01.076http://doi.org/10.1016/j.polymer.2015.01.076 .
Shi J J, Dong J Y. Polymer , 2016 . 85 10 - 18 . DOI:10.1016/j.polymer.2016.01.024http://doi.org/10.1016/j.polymer.2016.01.024 .
Zhou Hangsheng(周杭生), Li Kang(李康), Qin Yawei(秦亚伟), Dong Jinyong(董金勇). Atca Polymerica Sinica(高分子学报) , 2019 . 50 ( 11 ): 1177 - 1186 . DOI:10.11777/j.issn1000-3304.2019.19078http://doi.org/10.11777/j.issn1000-3304.2019.19078 .
Bukatov G D, Goncharov V S, Eakharov V A. Macromol Chem Phys , 1995 . 196 ( 5 ): 1751 - 1759 . DOI:10.1002/macp.1995.021960529http://doi.org/10.1002/macp.1995.021960529 .
Vittoria A, Mingione A, Abbate R A, Cipullo R, Busico V. Ind Eng Chem Res , 2019 . 58 ( 32 ): 14729 - 14735 . DOI:10.1021/acs.iecr.9b02801http://doi.org/10.1021/acs.iecr.9b02801 .
Chadwick J C. Macromol Symp , 2001 . 173 ( 1 ): 21 - 36 . DOI:10.1002/1521-3900(200108)173:1<21::AID-MASY21>3.0.CO;2-Ahttp://doi.org/10.1002/1521-3900(200108)173:1<21::AID-MASY21>3.0.CO;2-A .
Chadwick J C, Morini G, Balbontin G. Camurati I, Heere J J R, Mingozzi I, Teston F. Macromol Chem Phys , 2001 . 202 ( 10 ): 1995 - 2002 . DOI:10.1002/1521-3935(20010601)202:10<1995::AID-MACP1995>3.0.CO;2-Lhttp://doi.org/10.1002/1521-3935(20010601)202:10<1995::AID-MACP1995>3.0.CO;2-L .
Chadwick J C, Morini G, Albizzati E, Balbontin G, Mingozzi I, Cristofori A, Sudmeijer O, vanKessel G M M. Macromol Chem Phys , 1996 . 197 ( 8 ): 2501 - 2510 . DOI:10.1002/macp.1996.021970814http://doi.org/10.1002/macp.1996.021970814 .
Alshaiban A, Soares J B P. Macromol React Eng , 2014 . 8 ( 10 ): 723 - 735 . DOI:10.1002/mren.201400028http://doi.org/10.1002/mren.201400028 .
Shen Xianrong(沈显荣), Fu Zhisheng(傅智盛), Fan Zhiqinag(范志强). Atca Polymerica Sinica(高分子学报) , 2013 . ( 12 ): 1537 - 1544 . DOI:10.3724/SP.J.1105.2013.13127http://doi.org/10.3724/SP.J.1105.2013.13127 .
Alshaiban A, Soares J B P. Macromol React Eng , 2012 . 6 ( 6-7 ): 265 - 274 . DOI:10.1002/mren.201200002http://doi.org/10.1002/mren.201200002 .
Walter P, Trinkle S, Suhm J, Mäder D, Friedrich C, Mülhaupt R. Macromol Chem Phys , 2000 . 201 ( 5 ): 604 - 612 . DOI:10.1002/(SICI)1521-3935(20000301)201:5<604::AID-MACP604>3.0.CO;2-Ihttp://doi.org/10.1002/(SICI)1521-3935(20000301)201:5<604::AID-MACP604>3.0.CO;2-I .
Ye Z B, AlObaidi F, Zhu S P. Macromol Chem Phys , 2004 . 205 ( 7 ): 897 - 906 . DOI:10.1002/macp.200300128http://doi.org/10.1002/macp.200300128 .
Trinkle S, Walter P, Friedrich C. Rheologica Acta , 2002 . 41 ( 1-2 ): 103 - 113 . DOI:10.1007/s003970200010http://doi.org/10.1007/s003970200010 .
Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D. Polymer , 2004 . 45 ( 26 ): 8863 - 8870 . DOI:10.1016/j.polymer.2004.10.040http://doi.org/10.1016/j.polymer.2004.10.040 .
Münstedt H. Soft Matter , 2011 . 7 ( 6 ): 2273 - 2283 . DOI:10.1039/C0SM00891Ehttp://doi.org/10.1039/C0SM00891E .
Janzen J, Colby R H. J Mol Struct , 1999 . 485 ( SI ): 569 - 584.
0
浏览量
19
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构