浏览全部资源
扫码关注微信
南京邮电大学 有机电子与信息显示国家重点实验室培育基地 信息材料与纳米技术研究院 南京 210023
E-mail: iampfsun@njupt.edu.cn Peng-fei Sun, E-mail: iampfsun@njupt.edu.cn
E-mail: iamqlfan@njupt.edu.cn Qu-li Fan, E-mail: iamqlfan@njupt.edu.cn
纸质出版日期:2020-4,
网络出版日期:2020-1-22,
收稿日期:2019-11-14,
修回日期:2019-12-25,
扫 描 看 全 文
黄婷, 陈妍, 孙鹏飞, 范曲立, 黄维. 基于共轭聚合物的纳米粒子用于肿瘤的近红外二区荧光成像及光热治疗[J]. 高分子学报, 2020,51(4):346-354.
Ting Huang, Yan Chen, Peng-fei Sun, Qu-li Fan, Wei Huang. Conjugated-polymer Nanoparticle for NIR-II Fluorescence Imaging Guiding NIR-II Photothermal Therapy[J]. Acta Polymerica Sinica, 2020,51(4):346-354.
黄婷, 陈妍, 孙鹏飞, 范曲立, 黄维. 基于共轭聚合物的纳米粒子用于肿瘤的近红外二区荧光成像及光热治疗[J]. 高分子学报, 2020,51(4):346-354. DOI: 10.11777/j.issn1000-3304.2019.19192.
Ting Huang, Yan Chen, Peng-fei Sun, Qu-li Fan, Wei Huang. Conjugated-polymer Nanoparticle for NIR-II Fluorescence Imaging Guiding NIR-II Photothermal Therapy[J]. Acta Polymerica Sinica, 2020,51(4):346-354. DOI: 10.11777/j.issn1000-3304.2019.19192.
为提高生物组织荧光成像质量以及对肿瘤的高效光热治疗,设计合成了一种新型的窄带隙共轭聚合物(BDT-TTQ),并通过纳米沉积的方式将聚合物制备成水溶性纳米粒子(BDT-TTQ NPs). 该共轭聚合物纳米粒子在1000 ~ 1200 nm近红外二区范围具有较好的吸收,在1064 nm的激发光下能实现1200 ~ 1400 nm的近红外二区荧光成像. BDT-TTQ NPs纳米粒子粒径分布较窄,形貌呈规则的球形且分散均匀,具有好的生物相容性. 该纳米粒子既可以在体外实现较高的近红外二区荧光成像穿透深度,又可以实现对小鼠活体血管的高清晰度的近红外二区荧光成像. 此外,BDT-TTQ NPs纳米粒子在1064 nm激光下展现出优异的光热转换效率,具有较高的光毒性,对体外的肿瘤细胞以及小鼠的异质瘤具有高的光热杀伤能力.
To improve the quality of fluorescence imaging and effectiveness of photothermal therapy
We designed a novel conjugated-polymer (BDT-TTQ) with a narrow band gap for NIR-II fluorescence and NIR-II photothermal effect. To realize solubility of BDT-TTQ in water
we enveloped the hydrophobic polymer BDT-TTQ into amphiphilic copolymer (PEG-
b
-PPG-
b
-PEG
F-127) shells for NIR-II water-soluble nanoparticles (BDT-TTQ NPs) through the nanoprecipitation method. With strong absorption in the NIR-II region of 1000 − 1200 nm
the BDT-TTQ NPs can realize fluorescence image during 1200 − 1400 nm excited by 1064 nm laser. The prepared BDT-TTQ NPs were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The average hydrodynamic radius of BDT-TTQ NPs was around 62 nm and spherical morphology was observed from TEM. Besides
the BDT-TTQ NPs showed the similar hydrodynamic radius in physiological environment such as phosphate buffer saline (PBS)
Dulbecco's Modified Eagle Medium (DMEM) and fetal bovine serum (FBS) and exhibited the excellent biological stability
indicating the potential for further
in vivo
application. To study the NIR-II fluorescence characters
we firstly detected the maximum imaging depth of BDT-TTQ NPs
in vitro
and the penetration depth can achieve 6 mm at 1064 nm laser. High-resolution NIR-II fluorescence imaging of living blood vessels in mice was also achieved by BDT-TTO NPs under 1064 nm laser irradiation. In addition
the real-time NIR-II images of brain and abdomen were obtained with an ultrahigh signal-to-background ratio. Photothermal experiments suggested the BDT-TTQ NPs exhibited excellent photothermal conversion and outstanding photothermla stability under 1064 nm excitation
which revealed the potential of BDT-TTQ NPs for photothermal therapy
in vivo
. MTT assay and confocal laser scanning microscopy (CLSM) were used to analyse photothermal treatment toward human cervical carcinoma (HeLa) cells
in vitro
and the results indicated the nanoparticles performed an effective photothermal inhibition at the cellular level under laser irradiation. Morever
BDT-TTQ NPs developed in this study can realize NIR-II fluorescence imaging-guided photothermal therapy
in vivo
at 1064 nm laser.
共轭聚合物1064 nm激发近红外二区荧光成像近红外二区光热
Conjugated-polymer1064 nm ExcitationNIR-II fluorescence imagingNIR-II photothermal
Zhang Jianxu(张剑旭), Sun Tingting(孙婷婷), Xie Zhigang(谢志刚). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 6 ): 633 - 641.
Yan Gang(严刚), Nie Guangting(聂光庭), Kong Xiangquan(孔祥权), Kuang Miao(邝淼), Rong Jianghua(容建华). Acta Polymerica Sinica(高分子学报) , 2016 . ( 2 ): 256 - 263.
Ge X G, Fu Q R, Bai L, Chen B, Wang R J, Gao S, Song J B. New J Chem , 2019 . 43 8835 - 8851 . DOI:10.1039/C9NJ01402Khttp://doi.org/10.1039/C9NJ01402K .
Zhou J J, Jiang Y Y, Hou S A, Upputuri P K, Wu D, Li J C, Wang P. ACS Nano , 2018 . 12 2643 - 2651 . DOI:10.1021/acsnano.7b08725http://doi.org/10.1021/acsnano.7b08725 .
Deng X R, Liang S, Cai X C, Huang S S, Cheng Z Y, Shi Y S, Pang M L, Ma P A, Lin J. Nano Lett , 2019 . 19 6772 - 6780 . DOI:10.1021/acs.nanolett.9b01716http://doi.org/10.1021/acs.nanolett.9b01716 .
Lin H, Gao S S, Dai C, Chen Y, Shi J L. J Am Chem Soc , 2017 . 139 16235 - 16247 . DOI:10.1021/jacs.7b07818http://doi.org/10.1021/jacs.7b07818 .
Yu X J, Yang K, Chen X Y, Li W W. Biomaterials , 2017 . 143 120 - 129 . DOI:10.1016/j.biomaterials.2017.07.037http://doi.org/10.1016/j.biomaterials.2017.07.037 .
Zhou L B, Jing Y, Liu Y B, Liu Z H, Gao D Y, Chen H B, Song W Y, Wang T, Fang X F, Qin W P, Yuan Z, Dai S, Qiao Z A, Wu C F. Theranostics , 2018 . 8 663 - 675 . DOI:10.7150/thno.21927http://doi.org/10.7150/thno.21927 .
Chen Q S, Chen J Q, He M, Bai Y Y, Yan H X, Zeng N, Liu F Y, Wen S, Song L, Sheng Z H, Liu C B, Fang C H. Biomater Sci , 2019 . 7 3165 - 3177 . DOI:10.1039/C9BM00528Ehttp://doi.org/10.1039/C9BM00528E .
Sun T T, Han J F, Liu S, Wang X, Wang Z Y, Xie Z G. ACS Nano , 2019 . 13 7345 - 7354 . DOI:10.1021/acsnano.9b03910http://doi.org/10.1021/acsnano.9b03910 .
Zhang W S, Huang T, Li J W, Sun P F, Wang Y F, Shi W, Han W, Wang W J, Fan Q L, Huang W. ACS Appl Mater Interfaces , 2019 . 11 16311 - 16319 . DOI:10.1021/acsami.9b02597http://doi.org/10.1021/acsami.9b02597 .
Lu X M, Yuan P C, Zhang W S, Wu Q, Wang X X, Zhao M, Sun P F, Huang W, Fan Q L. Polym Chem , 2018 . 9 3118 - 3126 . DOI:10.1039/C8PY00215Khttp://doi.org/10.1039/C8PY00215K .
Li Xiaozhen(李晓珍), Tian Sichao(田思超), Sun Pengfei(孙鹏飞), Fan Quli(范曲立), Huang Wei(黄维). Acta Polymerica Sinica(高分子学报) , 2017 . ( 6 ): 952 - 958 . DOI:10.11777/j.issn1000-3304.2017.16311http://doi.org/10.11777/j.issn1000-3304.2017.16311 .
Sun Pengfei(孙鹏飞), Deng Weixing(邓卫星), Fan Quli(范曲立), Huang Wei(黄维). Acta Polymerica Sinica(高分子学报) , 2016 . ( 3 ): 375 - 381 . DOI:10.11777/j.issn1000-3304.2016.15255http://doi.org/10.11777/j.issn1000-3304.2016.15255 .
Li C Y, Zhang Y J, Chen G C, Hu F, Zhao K, Wang Q B. Adv Mater , 2017 . 29 1605754 DOI:10.1002/adma.201605754http://doi.org/10.1002/adma.201605754 .
Lu Xiaomei(卢晓梅), Zhao Meng(赵萌), Huang Wei(黄维). Acta Polymerica Sinica(高分子学报) , 2018 . ( 11 ): 1451 - 1458 . DOI:10.11777/j.issn1000-3304.2018.18068http://doi.org/10.11777/j.issn1000-3304.2018.18068 .
Yang Q L, Ma Z R, Wang H S, Zhou B, Zhu S J, Zhong Y T, Wang J Y, Wan H, Antaris A, Ma R, Zhang X, Yang J Y, Zhang X D, Sun H T, Liu W Q, Liang Y Y, Dai H J. Adv Mater , 2017 . 29 1605497 DOI:10.1002/adma.201605497http://doi.org/10.1002/adma.201605497 .
Zhang X D, Wang H S, Antaris A L, Li L L, Diao S, Ma R, Nguyen A, Hong G S, Ma Z R, Wang J, Zhu S J, Castellano J M, Wyss-Coray T, Liang Y Y, Luo J, Dai H J. Adv Mater , 2016 . 28 6872 - 6879 . DOI:10.1002/adma.201600706http://doi.org/10.1002/adma.201600706 .
Li C Y, Zhang Y J, Wang M, Zhang Y, Chen G C, Li L, Wu D M, Wang Q B. Biomaterials , 2014 . 35 393 - 400 . DOI:10.1016/j.biomaterials.2013.10.010http://doi.org/10.1016/j.biomaterials.2013.10.010 .
Hao X X, Li C Y, Zhang Y J, Wang H Z, Chen G C, Wang M, Wang Q B. Adv Mater , 2018 . 30 1804437 DOI:10.1002/adma.201804437http://doi.org/10.1002/adma.201804437 .
Dong B H, Li C Y, Chen G C, Zhang Y J, Zhang Y, Deng M J, Wang Q B. Chem Mater , 2013 . 25 2503 - 2509 . DOI:10.1021/cm400812vhttp://doi.org/10.1021/cm400812v .
Guo B, Sheng Z H, Hu D H, Liu C B, Zheng H R, Liu B. Adv Mater , 2018 . 30 1802591 DOI:10.1002/adma.201802591http://doi.org/10.1002/adma.201802591 .
Sun T T, Dou J H, Liu S, Wang X, Zheng X H, Wang Y P, Jian Pei, Xie Z G. ACS Appl Mater Interfaces , 2018 . 10 7919 - 7926 . DOI:10.1021/acsami.8b01458http://doi.org/10.1021/acsami.8b01458 .
Zhang W S, Sun X L, Huang T, Pan X X, Sun P F, Li J W, Zha H, Lu X M, Fan Q L, Huang W. Chem Commun , 2019 . 55 9487 DOI:10.1039/C9CC04196Fhttp://doi.org/10.1039/C9CC04196F .
Qi J, Sun C W, Li D Y, Zhang H Q, Yu W B, Zebibula A, Lam J W Y, Xi W, Zhu L, Cai F H, Wei P F, Zhu C L, Kwok R T K, Streich L L, Prevedel R, Qian J, Tang B Z. ACS Nano , 2018 . 12 7936 - 7945 . DOI:10.1021/acsnano.8b02452http://doi.org/10.1021/acsnano.8b02452 .
Li B H, Lu L F, Zhao M Y, Lei Z H, Zhang F. Angew Chem Int Ed , 2018 . 57 7483 - 7487 . DOI:10.1002/anie.201801226http://doi.org/10.1002/anie.201801226 .
0
浏览量
82
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构