浏览全部资源
扫码关注微信
1.青岛储能产业技术研究院 中国科学院青岛生物能源与过程研究所 青岛 266101
2.中国科学院大学材料与光电研究中心 北京 100049
[ "崔光磊,男,1973年生. 研究员,博士生导师,国家新能源汽车专项高比能固态锂电池技术项目首席科学家,国家“万人计划”,科技部中青年科技创新领军人才,国家杰出青年科学基金获得者,国务院特殊津贴专家. 获得山东省自然科学一等奖、青岛市自然科学一等奖等奖项. 2005年于中国科学院化学所获得有机化学博士学位,2005年9月至2009年先后在德国马普协会高分子所和固态所从事博士后研究. 2009年2月到中科院青岛生物能源与过程所工作,现任中科院青岛能源所学位委员会主任、学术委员会副主任,青岛储能产业技术研究院执行院长、能源应用技术研究室主任,国际聚合物电解质委员会理事、国际储能创新联盟理事、中国化学会电化学委员会委员、中国化学会有机固体专业委员会委员等. 近几年主要从事高比能固态电池关键材料和系统研发、深海特种电源开发应用及固态光电转换器件的研究工作. 先后在能源材料、化学、器件等方面的国际权威杂志《Nat. Commun.》,《Angew. Chem. Int. Ed.》,《Adv. Mater.》,《Environ. Energy Sci.》,《Adv. Funct. Mater.》,《J. Am. Chem. Soc.》,《Adv. Sci.》等发表文章260多篇,他引10000多次" ]
纸质出版日期:2020-7,
网络出版日期:2020-6-18,
收稿日期:2020-2-21,
修回日期:2020-3-27,
扫 描 看 全 文
刘亭亭, 张建军, 于喆, 吴瀚, 张津宁, 唐犇, 崔光磊. 用于锂二次电池的类三明治结构电解质的研究进展与展望[J]. 高分子学报, 2020,51(7):710-727.
Ting-ting Liu, Jian-jun Zhang, Zhe Yu, Han Wu, Jin-ning Zhang, Ben Tang, Guang-lei Cui. Research Progress and Perspectives of Sandwich-structured Electrolytes for Rechargeable Lithium Batteries[J]. Acta Polymerica Sinica, 2020,51(7):710-727.
刘亭亭, 张建军, 于喆, 吴瀚, 张津宁, 唐犇, 崔光磊. 用于锂二次电池的类三明治结构电解质的研究进展与展望[J]. 高分子学报, 2020,51(7):710-727. DOI: 10.11777/j.issn1000-3304.2019.19196.
Ting-ting Liu, Jian-jun Zhang, Zhe Yu, Han Wu, Jin-ning Zhang, Ben Tang, Guang-lei Cui. Research Progress and Perspectives of Sandwich-structured Electrolytes for Rechargeable Lithium Batteries[J]. Acta Polymerica Sinica, 2020,51(7):710-727. DOI: 10.11777/j.issn1000-3304.2019.19196.
设计和开发高性能电解质对于提升锂二次电池的安全使用性能和电化学性能十分必要. 类三明治结构电解质是一类新兴的,具有特殊两层、三层或多层对称或非对称结构的电解质体系,可实现不同材料的性能优势互补,同“刚柔并济”电解质设计理念相吻合. 基于此,本综述详细梳理了类三明治结构电解质在高电压锂电池、固态锂电池、锂金属电池和锂硫电池等方面展现出的多功能应用:(1)提高离子电导率;(2)提高负极界面相容性,抑制锂枝晶生长;(3)提高正极界面抗氧化性能;(4)防止过渡金属离子溶出游弋到负极;(5)防止多硫化物穿梭. 并从类三明治结构电解质特定应用方面出发,重点论述了类三明治结构电解质的类型、制备、功能以及在高性能锂二次电池中的研究进展. 文末还对类三明治结构电解质未来可能的发展趋势及存在的挑战进行了深入分析和阐释. 本综述将会对锂二次电池高性能电解质的设计、开发和研究工作起到非常好的理论指导和思路借鉴作用. “刚柔并济”类三明治结构电解质必将在未来高性能二次电池开发过程中发挥重要作用.
High-performance electrolyte is necessary to improve safety issues and electrochemical performance of rechargeable lithium batteries. Sandwich-structured electrolyte
a novel class of electrolyte system
possess special two
three or more layers of symmetrical or asymmetrical structures
which can complement the performance advantages of different materials
effectively improving the performance of rechargeable lithium batteries. Based on this
this paper combs the multi-functional applications exhibited by sandwich-structured electrolytes in high-voltage lithium batteries
solid-state lithium batteries
lithium metal batteries and high-energy lithium-sulfur batteries: (1) enhancing ionic conductivity; (2) improving compatibility of the lithium/electrolyte interface to inhibit lithium dendrite growth; (3) improving the oxidation resistance of the electrolyte at the cathode interface; (4) preventing dissolution of transition metal ions in the cathode; (5) suppressing the shuttling of polysulfides to improve the electrochemical performance of lithium-sulfur batteries. And from the specific application of sandwich-structured electrolytes
we mainly summary the types
preparation process and research advances of sandwich-structured electrolytes in high-performance rechargeable lithium batteries. At the end of the review
we also discuss the challenges and future development of sandwich-structured electrolytes. It will undoubtedly act as a great reference and theoretical guidance for researchers engaged in high-performance electrolytes for rechargeable lithium batteries.
类三明治结构电解质锂二次电池界面相容性展望
Sandwich structureElectrolytesRechargeable lithium batteriesInterfacial compatibilityPerspectives
Chu S, Cui Y, Liu N. Nat Mater , 2016 . 16 16 - 22 . DOI:10.1038/nmat4834http://doi.org/10.1038/nmat4834 .
Sun Y, Liu N, Cui Y. Nat Energy , 2016 . 1 16071 - 16082 . DOI:10.1038/nenergy.2016.71http://doi.org/10.1038/nenergy.2016.71 .
Armand M, Tarascon J M. Nature , 2008 . 451 652 - 657 . DOI:10.1038/451652ahttp://doi.org/10.1038/451652a .
Lin D, Liu Y, Cui Y. Nat Nanotechnol , 2017 . 12 194 - 206 . DOI:10.1038/nnano.2017.16http://doi.org/10.1038/nnano.2017.16 .
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Chem Rev , 2017 . 117 ( 15 ): 10403 - 10473 . DOI:10.1021/acs.chemrev.7b00115http://doi.org/10.1021/acs.chemrev.7b00115 .
Wang J, Yamada Y, Sodeyama K, Watanabe E, Takada K, Tateyama Y, Yamada A. Nat Energy , 2018 . 3 ( 1 ): 22 - 29 . DOI:10.1038/s41560-017-0033-8http://doi.org/10.1038/s41560-017-0033-8 .
Yang Y, Zheng G, Cui Y. Chem Soc Rev , 2013 . 42 ( 7 ): 3018 - 3032 . DOI:10.1039/c2cs35256ghttp://doi.org/10.1039/c2cs35256g .
Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar L F. Nat Commun , 2015 . 6 5682 DOI:10.1038/ncomms6682http://doi.org/10.1038/ncomms6682 .
Diao Y, Xie K, Xiong S, Hong X. J Electrochem Soc , 2012 . 159 ( 11 ): A1816 - A1821 . DOI:10.1149/2.020211jeshttp://doi.org/10.1149/2.020211jes .
Manthiram A, Yu X, Wang S. Nat Rev Mater , 2017 . 2 16103 DOI:10.1038/natrevmats.2016.103http://doi.org/10.1038/natrevmats.2016.103 .
Liu W, Lee S W, Lin D C, Shi F F, Wang S, Sendek A D, Cui Y. Nat Energy , 2017 . 2 17035 DOI:10.1038/nenergy.2017.35http://doi.org/10.1038/nenergy.2017.35 .
Fenton D E, Parker J M, Wright P V. Polymer , 1973 . 14 ( 11 ): 589 - 589.
Fu K, Gong Y, Dai J. P Natl Acad Sci USA , 2016 . 113 ( 26 ): 7094 - 7099 . DOI:10.1073/pnas.1600422113http://doi.org/10.1073/pnas.1600422113 .
Zhao Q, Liu X T, Stalin S, Khan K, Archer L A. Nat Energy , 2019 . 4 ( 5 ): 365 - 373 . DOI:10.1038/s41560-019-0349-7http://doi.org/10.1038/s41560-019-0349-7 .
Zhou J Q, Qian T, Liu J, Wang M F, Zhang L, Yan C L. Nano Lett , 2019 . 19 ( 5 ): 3066 - 3072 . DOI:10.1021/acs.nanolett.9b00450http://doi.org/10.1021/acs.nanolett.9b00450 .
Grewal M S, Tanaka M, Kawakami H. Electrochim Acta , 2019 . 307 148 - 156 . DOI:10.1016/j.electacta.2019.03.172http://doi.org/10.1016/j.electacta.2019.03.172 .
Zhang X, Liu T, Zhang S. J Am Chem Soc , 2017 . 139 ( 39 ): 13779 - 13785 . DOI:10.1021/jacs.7b06364http://doi.org/10.1021/jacs.7b06364 .
Alarco P, AbulebdehY, Abouimrane A. Nat Mater , 2004 . 3 ( 7 ): 476 - 481 . DOI:10.1038/nmat1158http://doi.org/10.1038/nmat1158 .
Chai J C, Liu Z H, Ma J. Adv Sci , 2017 . 4 ( 2 ): 1600377 DOI:10.1002/advs.201600377http://doi.org/10.1002/advs.201600377 .
Zhang J J, Yang J F, Dong T T, Zhang M, Chai J C, Dong S M, Wu T Y, Zhou X H, Cui G L. Small , 2018 . 14 1800821 DOI:10.1002/smll.201800821http://doi.org/10.1002/smll.201800821 .
Liu Zhihong(刘志宏), Kong Qingshan(孔庆山), Cui Guanglei(崔光磊). Advanced Materials Industry(新材料产业) , 2012 . ( 9 ): 44 - 49.
Zhang H P, Zhang P, Li Z H, Sun M, Wu Y P, Wu H Q. Electrochem Commun , 2007 . 9 ( 7 ): 1700 - 1703 . DOI:10.1016/j.elecom.2007.03.021http://doi.org/10.1016/j.elecom.2007.03.021 .
Xiao Q, Li Z, Gao D, Zhang H. J Membr Sci , 2009 . 326 ( 2 ): 260 - 264 . DOI:10.1016/j.memsci.2008.10.019http://doi.org/10.1016/j.memsci.2008.10.019 .
Zhang M Y, Li M X, Chang Z, Wang Y F, Gao J, Zhu Y S, Wu Y P, Huang W. Electrochim Acta , 2017 . 245 752 - 759 . DOI:10.1016/j.electacta.2017.05.154http://doi.org/10.1016/j.electacta.2017.05.154 .
Zhang J Q, Chen S Q, Xie X Q, Kretschmer K, Huang X D, Sun B, Wang G X. J Membr Sci , 2014 . 472 133 - 140 . DOI:10.1016/j.memsci.2014.08.049http://doi.org/10.1016/j.memsci.2014.08.049 .
Fu K, Gong Y, Hitz G T, McOwen D W, Li Y, Xu S, Wen Y, Zhang L, Wang C, Pastel, Dai J, Liu B, Xie H, Yao Y, Wachsman E D, Hu L. Energy Environ Sci , 2017 . 10 ( 7 ): 1568 - 1575 . DOI:10.1039/C7EE01004Dhttp://doi.org/10.1039/C7EE01004D .
Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough J B. J Am Chem Soc , 2016 . 138 ( 30 ): 9385 - 9388 . DOI:10.1021/jacs.6b05341http://doi.org/10.1021/jacs.6b05341 .
Duan H, Yin Y X, Shi Y, Wang P F, Zhang X D, Yang C P, Shi J L, Wen R, Guo Y G, Wan L J. J Am Chem Soc , 2018 . 140 ( 1 ): 82 - 85 . DOI:10.1021/jacs.7b10864http://doi.org/10.1021/jacs.7b10864 .
Chi S S, Liu Y, Zhao N, Guo X, Nan C W, Fan L Z. Energy Storage Mater, 2019, 17: 309 − 316
Li H, Li M, Siyal S H, Zhu M, Lan J L, Sui G, Yu Y, Zhong W, Yang X. J Membr Sci , 2018 . 555 169 - 176 . DOI:10.1016/j.memsci.2018.03.038http://doi.org/10.1016/j.memsci.2018.03.038 .
Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X. Adv Energy Mater , 2019 . 9 1804004 DOI:10.1002/aenm.201804004http://doi.org/10.1002/aenm.201804004 .
Yang H, Zhang Y, Tennenbaum M J, Althouse Z, Ma Y, He Y, Wu Y, Wu T H, Mathur A, Chen P, Huang Y, Fernandez-Nieves A, Kohl P A, Liu N. ACS Appl Mater Interfaces , 2019 . 11 ( 31 ): 27906 - 27912 . DOI:10.1021/acsami.9b08285http://doi.org/10.1021/acsami.9b08285 .
Yue H Y, Li J X, Wang Q X, Li C B, Zhang J, Li Q H, Li X N, Zhang H S, Yang S T. ACS Sustain Chem Eng , 2018 . 6 268 - 274 . DOI:10.1021/acssuschemeng.7b02401http://doi.org/10.1021/acssuschemeng.7b02401 .
Zhou W, Wang Z, Pu Y, Li Y, Xin S, Li X, Chen J, Goodenough J B. Adv Mater , 2019 . 31 1805574 DOI:10.1002/adma.201805574http://doi.org/10.1002/adma.201805574 .
Liang J Y, Zeng X X, Zhang X D, Zuo T T, Yan M, Yin Y X, Shi J L, Wu X W, Guo Y G, Wan L J. J Am Chem Soc , 2019 . 141 9165 - 9169 . DOI:10.1021/jacs.9b03517http://doi.org/10.1021/jacs.9b03517 .
MahootcheianAsl N, Kim J H, Pieczonka N P W, Liu Z Y, Kim Y. Electrochem Commun , 2013 . 32 1 - 4 . DOI:10.1016/j.elecom.2013.03.031http://doi.org/10.1016/j.elecom.2013.03.031 .
Wang L, Wang Y, Xia Y. Energy Environ Sci , 2015 . 8 ( 5 ): 1551 - 1558 . DOI:10.1039/C5EE00058Khttp://doi.org/10.1039/C5EE00058K .
Liang J, Sun Q, Zhao Y, Sun Y, Wang C, Li W, Li M, Wang D, Li X, Liu, Adair K, Li R, Zhang L, Yang R, Lu S, Huang H, Sun X. J Mater Chem A , 2018 . 6 ( 46 ): 23712 - 23719 . DOI:10.1039/C8TA09069Fhttp://doi.org/10.1039/C8TA09069F .
Wang Q, Wen Z, Jin J, Guo J, Huang X, Yang J, Chen C. Chem Commun , 2016 . 52 ( 8 ): 1637 - 1640 . DOI:10.1039/C5CC08279Jhttp://doi.org/10.1039/C5CC08279J .
Qu H, Zhang J, Du A, Chen B, Chai J, Xue N, Wang L, Qiao L, Wang C, Zang X, Yang J, Wang X, Cui G. Adv Sci , 2018 . 5 ( 3 ): 1700503 DOI:10.1002/advs.201700503http://doi.org/10.1002/advs.201700503 .
0
浏览量
63
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构