浏览全部资源
扫码关注微信
大连理工大学高分子材料系 精细化工国家重点实验室 大连 116024
E-mail: wqqiao@dlut.edu.cn Wen-qiang Qiao, E-mail: wqqiao@dlut.edu.cn
E-mail: wwjoy@dlut.edu.cn Zhi-yuan Wang, E-mail: wwjoy@dlut.edu.cn
纸质出版日期:2020-4,
网络出版日期:2020-1-21,
收稿日期:2019-12-6,
修回日期:2019-12-24,
扫 描 看 全 文
高诗佳, 王鑫, 张育林, 张赛, 乔文强, 王植源. 光敏层厚度与退火温度调控对聚3-己基噻吩光电探测器性能的影响[J]. 高分子学报, 2020,51(4):338-345.
Shi-jia Gao, Xin Wang, Yu-lin Zhang, Sai Zhang, Wen-qiang Qiao, Zhi-yuan Wang. Effects of Annealing Temperature and Active Layer Thickness on the Photovoltaic Performance of Poly(3-hexylthiophene) Photodetector[J]. Acta Polymerica Sinica, 2020,51(4):338-345.
高诗佳, 王鑫, 张育林, 张赛, 乔文强, 王植源. 光敏层厚度与退火温度调控对聚3-己基噻吩光电探测器性能的影响[J]. 高分子学报, 2020,51(4):338-345. DOI: 10.11777/j.issn1000-3304.2019.19206.
Shi-jia Gao, Xin Wang, Yu-lin Zhang, Sai Zhang, Wen-qiang Qiao, Zhi-yuan Wang. Effects of Annealing Temperature and Active Layer Thickness on the Photovoltaic Performance of Poly(3-hexylthiophene) Photodetector[J]. Acta Polymerica Sinica, 2020,51(4):338-345. DOI: 10.11777/j.issn1000-3304.2019.19206.
以聚3-己基噻吩(P3HT)为给体材料,富勒烯衍生物(PC
61
BM)为受体材料,制备了一系列结构为ITO/PEDOT:PSS/P3HT:PC
61
BM/C
60
/Al的体异质结光电探测器. 研究了120、160、180与200 nm不同光敏层厚度,100、120、130、140与150 °C不同退火温度等条件对器件性能的影响,并采用原子力显微镜(AFM)对光敏层形貌进行了分析. 研究发现,基于180 nm厚光敏层、150 °C退火处理的器件,在−2 V的偏压下550 nm处有最大响应度,为268 mA/W,并且在470 ~ 610 nm范围内响应度都超过了200 mA/W;基于180 nm厚光敏层、120 °C退火处理的器件有最大线性动态范围,为95 dB. 研究表明,适当厚度的光敏层有利于提高光吸收效率与器件的光伏性能;退火处理,可以使光敏层形成均匀的互穿网络结构,进而减小空穴与电子的复合概率,提高器件的光伏性能.
Poly(3-hexylthiophene) (P3HT) with good electronic transmission capacity is one of promising material for organic photodetector. Compared with organic solar cells
the research of photodetector based on P3HT is deficient
especially in how to improve the light absorption efficiency and electronic transmission ability of active layer. Here
bulk heterojunction photodetectors with a structure of ITO/PEDOT:PSS/P3HT:PC
61
BM/C
60
/Al were prepared by using P3HT as a donor and fullerene derivative (PC
61
BM) as an acceptor. The change of active layer thickness plays an important role in the effective transfer of photogenerated charge to the electrode. Although increasing the thickness of active layer can increase the light absorption efficiency
it may also lead to the recombination of electrons and holes in the process of long distance transmission. In addition
annealing condition is the key to the film forming process. Adjusting the annealing temperature can control the self-assembly of active layer
thus obtaining the ideal nano-size phase separation structure and reducing the recombination probability of photoexcitons. Therefore
the active layer thickness in P3HT devices varied at 120
160
180 and 200 nm and the devices were annealed at 100
120
130
140 and 150 °C in order to probe the effect of these variables on photodetector performance. It was found that the device with a 180-nm thick active layer
after being annealed at 150 °C
exhibited the maximal responsivity of 268 mA/V at 550 nm and more than 200 mA/W in the wavelengths of 470 − 610 nm under the bias of −2 V. Furthermore
the same device showed a linear dynamic range of 95 dB after annealing at 120 °C. Our study demonstrates that the thickness of active layer is of great importance to the light absorption efficiency and the device performance
while the annealing treatment can significantly affect the morphology of active layer
as evidenced by AFM study
which reduces the recombination probability of holes and the electrons and thus improves the photodetector performance.
聚(3-己基噻吩)退火膜厚聚集态结构光电探测器
Poly(3-hexylthiophene)AnnealingFilm thicknessFilm morphologyPhotodetector
Xu J J, Hu J C, Liu X F. Macromol Rapid Commun , 2009 . 30 ( 16 ): 1419 - 1423 . DOI:10.1002/marc.200900132http://doi.org/10.1002/marc.200900132 .
Qi J, Qiao W Q, Wang Z Y. Chem Rec , 2016 . 16 1531 - 1548 . DOI:10.1002/tcr.201600013http://doi.org/10.1002/tcr.201600013 .
Cui Yong(崔勇), Yao Huifeng(姚惠峰), Yang Chenyi(杨晨熠), Zhang Shaoqing(张少青), Hou Jianhui(侯剑辉). Acta Polymerica Sinica(高分子学报) , 2018 . ( 2 ): 223 - 230 . DOI:10.11777/j.issn1000-3304.2018.17297http://doi.org/10.11777/j.issn1000-3304.2018.17297 .
Yang Peipei(杨佩佩), Dong Lichao(董立超), Li Yuanyuan(李园园), Zhang Longlong(张龙龙), Shi Jianbing(石建兵), Zhi Junge(支俊格), Tong Bin(佟斌), Dong Yuping(董宇平). Acta Polymerica Sinica(高分子学报) , 2017 . ( 8 ): 1285 - 1293 . DOI:10.11777/j.issn1000-3304.2017.17001http://doi.org/10.11777/j.issn1000-3304.2017.17001 .
Yao Huifeng(姚惠峰), Hou Jianhui(侯剑辉). Acta Polymerica Sinica(高分子学报) , 2016 . ( 11 ): 1468 - 1481.
Deng Yanghua(邓阳华), Xiao Haibin(肖海斌), Qiao He(乔贺), Tan Songting(谭松庭). Acta Polymerica Sinica(高分子学报) , 2017 . ( 6 ): 922 - 929 . DOI:10.11777/j.issn1000-3304.2017.16314http://doi.org/10.11777/j.issn1000-3304.2017.16314 .
Lu Junming(卢俊明), Cai Wanqing(蔡万清), Zhang Guichuan(张桂传), Liu Shengjian(刘升建), Ying Lei(应磊),Huang Fei(黄飞). Acta Chimica Sinica(化学学报) , 2015 . 73 1153 - 1160 . DOI:10.6023/A15080546http://doi.org/10.6023/A15080546 .
Huang Fei(黄飞), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报) , 2016 . ( 4 ): 399 - 401 . DOI:10.11777/j.issn1000-3304.2016.16111http://doi.org/10.11777/j.issn1000-3304.2016.16111 .
Azzellino G, Grimoldi A, Binda M, Caironi M, Natali D, Sampietro M. Adv Mater , 2013 . 25 6829 - 6833 . DOI:10.1002/adma.201303473http://doi.org/10.1002/adma.201303473 .
Ruderer M A, Metwalli E, Wang W. ChemPhysChem , 2009 . 10 664 - 671 . DOI:10.1002/cphc.200800773http://doi.org/10.1002/cphc.200800773 .
Hu Z Y, Zhang J J, Huang L K, Sun J Y, Zhang T, He H Y, Zhang J. Renew Energ , 2015 . 74 11 - 17 . DOI:10.1016/j.renene.2014.07.034http://doi.org/10.1016/j.renene.2014.07.034 .
Liu X L, Wang H X, Yang T B, Zhang W, Gong X. ACS Appl Mater Interfaces , 2012 . 4 ( 7 ): 3701 - 3705 . DOI:10.1021/am300787mhttp://doi.org/10.1021/am300787m .
Kim C-H, Cha S-H, Kim S C, Song M K, Lee J, Shin W S, Moon S J. ACS Nano , 2011 . 5 3319 - 3325 . DOI:10.1021/nn200469dhttp://doi.org/10.1021/nn200469d .
Motaung D E, Malgas G F, Arendse C J, Mavundla S E, Oliphant C J, Knoesen D. Sol Energ Mater Sol C , 2009 . 93 1674 - 1680 . DOI:10.1016/j.solmat.2009.05.016http://doi.org/10.1016/j.solmat.2009.05.016 .
Kim J Y, Noh S, Nam Y M, Kim J Y, Jo W H. ACS Appl Mater Interfaces , 2011 . 3 4279 - 4285 . DOI:10.1021/am2009458http://doi.org/10.1021/am2009458 .
Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H. Nature , 1999 . 401 685 - 688 . DOI:10.1038/44359http://doi.org/10.1038/44359 .
Oh S H, Heo S J, Yang J S, Kim H J. ACS Appl Mater Interfaces , 2013 . 5 ( 22 ): 11530 - 11534 . DOI:10.1021/am4046475http://doi.org/10.1021/am4046475 .
Rashmi, Kapoor A K, Upendra K, Balakrishnan. Pramana-J Phys , 2007 . 68 ( 3 ): 489 - 498 . DOI:10.1007/s12043-007-0052-2http://doi.org/10.1007/s12043-007-0052-2 .
Wang D H, Kim J K, Seo J H, Park O O, Park J H. Sol Energ Mater Sol C , 2012 . 101 249 - 255 . DOI:10.1016/j.solmat.2012.02.005http://doi.org/10.1016/j.solmat.2012.02.005 .
Oklobia O, Shafai T S. Solid State Electron , 2013 . 87 64 - 68 . DOI:10.1016/j.sse.2013.05.005http://doi.org/10.1016/j.sse.2013.05.005 .
Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y. Nat Mater , 2005 . 4 864 - 868 . DOI:10.1038/nmat1500http://doi.org/10.1038/nmat1500 .
Liu B, Wang Y, Chen P, Zhang X H, Sun H L, Tang Y M, Liao Q G. ACS Appl Mater Interfaces , 2019 . 11 33505 - 33514 . DOI:10.1021/acsami.9b12583http://doi.org/10.1021/acsami.9b12583 .
Li L L, Zhang F J, Wang J, An Q S, Sun Q Q, Wang W B, Zhang J. Sci Rep-UK , 2015 . 5 9181 DOI:10.1038/srep09181http://doi.org/10.1038/srep09181 .
Zhong Z M, Li K, Zhang J X, Ying L, Xie R H, Yu G, Huang F, Cao Y. ACS Appl Mater Interfaces , 2019 . 11 14208 - 14214 . DOI:10.1021/acsami.9b02092http://doi.org/10.1021/acsami.9b02092 .
Zhong Wenkai(钟文楷), Xie Ruihao(谢锐浩), Ying Lei(应磊), Huang Fei(黄飞), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报) , 2018 . ( 2 ): 217 - 222 . DOI:10.11777/j.issn1000-3304.2018.17242http://doi.org/10.11777/j.issn1000-3304.2018.17242 .
Shrotriya V, Ouyang J Y, Tseng R J, Li G, Yang Y. Chem Phys Lett , 2005 . 411 ( 1-3 ): 138 - 143 . DOI:10.1016/j.cplett.2005.06.027http://doi.org/10.1016/j.cplett.2005.06.027 .
Yager K G, Tanchak O M, Barrett C J. Rev Sci Instrum , 2006 . 77 769 - 141.
Yao Y, Liang Y Y, Shrotriya V, Xiao S Q, Yu L P, Yang Y. Adv Mater , 2007 . 19 ( 22 ): 3979 - 3983 . DOI:10.1002/adma.200602670http://doi.org/10.1002/adma.200602670 .
Kim K D, Koo J b, Jong k, Yang Y S. J Korean Phys Soc , 2010 . 57 ( 1 ): 124 - 127 . DOI:10.3938/jkps.57.124http://doi.org/10.3938/jkps.57.124 .
Ruderer M A, Wang C, Schaible E. Macromolecules , 2013 . 46 ( 11 ): 4491 - 4501 . DOI:10.1021/ma4006999http://doi.org/10.1021/ma4006999 .
Huan B Y, Glynos E, Frieberg B. ACS Appl Mater Interfaces , 2012 . 4 5204 - 5210 . DOI:10.1021/am3011252http://doi.org/10.1021/am3011252 .
Yan L P, Wang Y L, Wei J F. J Mater Chem A , 2019 . 7 ( 12 ): 7099 - 7108 . DOI:10.1039/C8TA12109Ehttp://doi.org/10.1039/C8TA12109E .
An T, Wang Y Q, Xue J W. Opt Quant Electron , 2020 . 52 ( 1 ): 1 - 12 . DOI:10.1007/s11082-019-2116-1http://doi.org/10.1007/s11082-019-2116-1 .
0
浏览量
27
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构